cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238591 Number of partitions p of n such that 4*min(p) is a part of p.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 5, 8, 11, 16, 23, 32, 45, 60, 81, 109, 144, 190, 247, 320, 412, 529, 675, 854, 1078, 1355, 1695, 2117, 2626, 3251, 4010, 4932, 6047, 7394, 9012, 10959, 13290, 16083, 19407, 23379, 28090, 33689, 40317, 48158, 57406, 68324, 81155, 96248
Offset: 1

Views

Author

Clark Kimberling, Mar 01 2014

Keywords

Examples

			a(9) = 5 counts these partitions:  441, 4311, 4221, 42111, 411111.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, b(n, i+1)+b(n-i, i)))
        end:
    a:= n-> add(b(n-5*i, i), i=1..n/5):
    seq(a(n), n=1..60);  # Alois P. Heinz, Mar 03 2014
  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 4*Min[p]]], {n, 50}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i>n, 0, b[n, i+1] + b[n-i, i]]];
    a[n_] := Sum[b[n - 5*i, i], {i, 1, n/5}];
    Array[a, 60] (* Jean-François Alcover, Jun 09 2021, after Alois P. Heinz *)
  • PARI
    my(N=50, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, x^(5*k)/prod(j=k, N, 1-x^j)))) \\ Seiichi Manyama, May 17 2023

Formula

G.f.: Sum_{k>=1} x^(5*k)/Product_{j>=k} (1-x^j). - Seiichi Manyama, May 17 2023
From Vaclav Kotesovec, Jun 19 2025: (Start)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n) * (1 - (sqrt(3/2)/Pi + 97*Pi/(24*sqrt(6))) / sqrt(n)).
A000041(n) - a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3*sqrt(2)*n^(3/2)). (End)