A238599 Numbers k such that k+x+y is a perfect cube, where x and y are the two cubes nearest to k.
0, 29, 171, 476, 1015, 1044, 1907, 3142, 4815, 7093, 9882, 13313, 17452, 22580, 28393, 35118, 42821, 43120, 51939, 61874, 72991, 85835, 99604, 114759, 131366, 150192, 170009, 191482, 214677, 240625, 267588, 296477, 327358, 361568, 396775, 434178, 473843, 475306, 517455
Offset: 1
Keywords
Examples
The two cubes nearest to 0 are 0 and 1, and, because 0+0+1 is a perfect cube, 0 is in the sequence. The two cubes nearest to 1 are 0 and 1, and, because 1+0+1=2 is not a perfect cube, 1 is not in the sequence. The two cubes nearest to 29 are 27 and 8, and, because 29+27+8=64=4^3 is a perfect cube, 29 is in the sequence.
Programs
-
Mathematica
pcQ[n_]:=Module[{cr=Surd[n,3]},IntegerQ[Surd[Total[Nearest[Range[ Floor[ cr]-1,Ceiling[cr]+1]^3,n,2]]+n,3]]]; Select[Range[0,520000],pcQ] (* Harvey P. Dale, Jul 25 2018 *)
-
Python
def icbrt(a): sr = 1 << (int.bit_length(int(a)) >> 1) while a < sr*sr*sr: sr>>=1 b = sr>>1 while b: s = sr + b if a >= s*s*s: sr = s b>>=1 return sr for k in range(1000000): s = icbrt(k) if k and s*s*s==k: s-=1 d1 = abs(k-s**3) d2 = abs(k-(s+1)**3) d3 = abs(k-(s-1)**3) kxy = k + s**3 + (s+1)**3 if s and d3
-
Sage
def gen_a(): n = 1 while True: for t in range(n*(n*n + 3), (n+1)*(n*n + 2*n + 4) + 1): c = t + (2*n + 1)*(n*n + n + 1) if round(floor(c^(1/3)))^3 == c: yield t n += 1 # Ralf Stephan, Mar 09 2014