cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238604 a(n) = Sum_{k=0..3} f(n+k)^2 where f=A130519.

Original entry on oeis.org

0, 1, 5, 14, 30, 65, 125, 216, 344, 533, 793, 1134, 1566, 2125, 2825, 3680, 4704, 5945, 7421, 9150, 11150, 13481, 16165, 19224, 22680, 26605, 31025, 35966, 41454, 47573, 54353, 61824, 70016, 79025, 88885, 99630, 111294, 123985, 137741, 152600, 168600, 185861
Offset: 0

Views

Author

Michael Somos, Mar 01 2014

Keywords

Examples

			G.f. = x + 5*x^2 + 14*x^3 + 30*x^4 + 65*x^5 + 125*x^6 + 216*x^7 + ...
		

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1 +2*x+2*x^2+2*x^3+10*x^4+2*x^5+2*x^6+2*x^7+ x^8)/((1-x)^3*(1-x^4)^2))); // G. C. Greubel, Aug 07 2018
  • Mathematica
    CoefficientList[Series[x*(1+2*x+2*x^2+2*x^3+10*x^4+2*x^5+2*x^6+2*x^7+ x^8)/((1-x)^3*(1-x^4)^2), {x, 0, 50}], x] (* G. C. Greubel, Aug 07 2018 *)
  • PARI
    {a(n) = if( n<0, n = -1-n); polcoeff( x * (1 + 2*x + 2*x^2 + 2*x^3 + 10*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + x^8) / ( (1 - x)^3 * (1 - x^4)^2 ) + x * O(x^n), n)};
    

Formula

G.f.: x * (1 + 2*x + 2*x^2 + 2*x^3 + 10*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + x^8) / ( (1 - x)^3 * (1 - x^4)^2 ).
a(n) = a(-1 - n) for all n in Z. floor( sqrt( a(n))) = A054925(n+1).