cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238630 Number of partitions of 3^n into parts that are at most 3.

Original entry on oeis.org

1, 3, 12, 75, 588, 5043, 44652, 399675, 3590508, 32294883, 290594892, 2615176875, 23536060428, 211822949523, 1906401762732, 17157601515675, 154418370594348, 1389765206208963, 12507886468460172, 112570977053880075, 1013138789998136268, 9118249099522873203
Offset: 0

Views

Author

Alois P. Heinz, Mar 01 2014

Keywords

Examples

			a(2) = 12: 333, 3222, 3321, 22221, 32211, 33111, 222111, 321111, 2211111, 3111111, 21111111, 111111111.
		

Crossrefs

Row n=3 of A238016.

Programs

  • Maple
    gf:= (9*x^3+12*x^2-10*x+1)/((1-x)*(1-3*x)*(1-3^2*x)):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..30);
  • Mathematica
    Round[(3^Range[0, 25] + 3)^2/12] (* Paolo Xausa, Jun 26 2024 *)

Formula

a(n) = [x^(3^n)] Product_{j=1..3} 1/(1-x^j).
G.f.: (9*x^3+12*x^2-10*x+1)/((1-x)*(1-3*x)*(1-3^2*x)).
a(n) = A001399(3^n) = round((3^n+3)^2/12).
a(n) = 3*A051500(n-1) for n>=1. - Hugo Pfoertner, May 04 2024