A238632 Number of partitions of 5^n into parts that are at most 5.
1, 7, 377, 106852, 55567352, 33432635477, 20735819929227, 12940003469288602, 8085018247233663602, 5052825953808096554227, 3157977415776418319210477, 1973731034215692844676632352, 1233581290054852867292137569852, 770988230493054044846859764522977
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..350
Crossrefs
Row n=5 of A238016.
Programs
-
Maple
gf:= (1953125*x^5+4828125*x^4-2015125*x^3+96440*x^2-774*x+1)/mul(1-5^j*x, j=0..4): a:= n-> coeff(series(gf, x, n+1), x, n): seq(a(n), n=0..20);
Formula
a(n) = [x^(5^n)] Product_{j=1..5} 1/(1-x^j).
G.f.: (1953125*x^5+4828125*x^4-2015125*x^3+96440*x^2-774*x+1) / Product_{j=0..4} 1-5^j*x.