cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238639 Position of [n, n-1, ..., 2, 1] in Mathematica-ordered list of partitions of n(n+1)/2.

Original entry on oeis.org

1, 1, 2, 6, 23, 103, 498, 2493, 12741, 66224, 348963, 1859009, 9994196, 54155387, 295477841, 1621962199, 8951635343, 49644856801, 276540258555, 1546630084062, 8681889729354, 48900895532763, 276302483274825, 1565747892473958, 8896975706929141, 50683901455201860
Offset: 0

Views

Author

Clark Kimberling, Mar 04 2014

Keywords

Examples

			The partitions of 6 in Mathematica order are 6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111.  The position of 321 is a(3) = 6.
		

Crossrefs

Cf. A000217, A080577 (Mathematica ordering), A238638, A238640, A330661, A332706.

Programs

  • Maple
    g:= (n, i)-> `if`(n=0, 1, g(n-i+1, i-1)+ b(n-i, i)):
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> (m-> add(b(m-j, min(j, m-j)), j=n+1..m)+
                     g(m-n, n))(n*(n+1)/2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 03 2015
  • Mathematica
    r[n_] := Table[n - k, {k, 0, n - 1}]; Flatten[Table[Position[IntegerPartitions[n (n + 1)/2], r[n]], {n, 0, 2}]]
    g[n_, i_] := If[n==0, 1, g[n-i+1, i-1] + b[n-i, i]]; b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Function[m, Sum[b[m-j, Min[j, m-j]], {j, n+1, m}] + g[m-n, n]][n(n+1)/2]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 28 2015, after Alois P. Heinz *)

Extensions

a(13)-a(17) from Manfred Scheucher, Jun 01 2015
a(18)-a(25) from Alois P. Heinz, Jun 02 2015