cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238660 Number of partitions of n having population standard deviation = 2.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 1, 3, 0, 5, 0, 7, 4, 2, 0, 19, 3, 2, 9, 20, 0, 38, 0, 22, 33, 7, 12, 84, 0, 8, 52, 90, 0, 127, 0, 87, 103, 22, 0, 304, 9, 74, 131, 153, 0, 214, 139, 390, 192, 59, 0, 1219, 0, 73, 460, 372, 383, 908, 0, 501, 439, 832, 0
Offset: 1

Views

Author

Clark Kimberling, Mar 03 2014

Keywords

Comments

Regarding "standard deviation" see Comments at A238616.

Examples

			There are 22 partitions of 8, whose standard deviations are given by these approximations:  0., 3., 2., 2.35702, 1., 1.69967, 1.73205, 0., 1.24722, 0.942809, 1.22474, 1.2, 0.471405, 1., 0.707107, 0.8, 0.745356, 0., 0.489898, 0.471405, 0.349927, 0, so that a(8) = 1.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, m, s, c) `if`(n=0, `if`(s/c-(m/c)^2=4, 1, 0),
          `if`(i=1, b(0$2, m+n, s+n, c+n), add(b(n-i*j, i-1,
           m+i*j, s+i^2*j, c+j), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0$3):
    seq(a(n), n=1..50);  # Alois P. Heinz, Mar 11 2014
  • Mathematica
    z = 50; g[n_] := g[n] = IntegerPartitions[n]; c[t_] := c[t] = Length[t]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, c[t]}]/c[t]];
    Table[Count[g[n], p_ /; s[p] < 2], {n, z}]   (*A238658*)
    Table[Count[g[n], p_ /; s[p] <= 2], {n, z}]  (*A238659*)
    Table[Count[g[n], p_ /; s[p] == 2], {n, z}]  (*A238660*)
    Table[Count[g[n], p_ /; s[p] > 2], {n, z}]   (*A238661*)
    Table[Count[g[n], p_ /; s[p] >= 2], {n, z}]  (*A238662*)
    t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]]
    ListPlot[Sort[t[30]]] (*plot of st deviations of partitions of 30*)
    (* Second program: *)
    b[n_, i_, m_, s_, c_] := b[n, i, m, s, c] = If[n == 0,
         If[s/c - (m/c)^2 == 4, 1, 0], If[i == 1, b[0, 0, m+n, s+n, c+n],
         Sum[b[n - i*j, i - 1, m + i*j, s + i^2*j, c + j], {j, 0, n/i}]]];
    a[n_] := b[n, n, 0, 0, 0];
    Array[a, 50] (* Jean-François Alcover, Jun 03 2021, after Alois P. Heinz *)

Extensions

a(51)-a(71) from Alois P. Heinz, Mar 11 2014