A238662
Number of partitions of n having population standard deviation >= 2.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 1, 3, 5, 9, 12, 20, 29, 43, 62, 88, 118, 169, 223, 306, 403, 532, 693, 907, 1160, 1490, 1910, 2423, 3044, 3845, 4783, 5957, 7401, 9104, 11209, 13805, 16806, 20449, 24920, 30223, 36494, 44022, 52880, 63511, 76003, 90631, 108088, 128708
Offset: 1
There are 22 partitions of 8, whose population standard deviations are given by these approximations: 0., 3., 2., 2.35702, 1., 1.69967, 1.73205, 0., 1.24722, 0.942809, 1.22474, 1.2, 0.471405, 1., 0.707107, 0.8, 0.745356, 0., 0.489898, 0.471405, 0.349927, 0, so that a(8) = 3.
-
b:= proc(n, i, m, s, c) `if`(n=0, `if`(s/c-(m/c)^2>=4, 1, 0),
`if`(i=1, b(0$2, m+n, s+n, c+n), add(b(n-i*j, i-1,
m+i*j, s+i^2*j, c+j), j=0..n/i)))
end:
a:= n-> b(n$2, 0$3):
seq(a(n), n=1..50); # Alois P. Heinz, Mar 11 2014
-
z = 50; g[n_] := g[n] = IntegerPartitions[n]; c[t_] := c[t] = Length[t]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, c[t]}]/c[t]];
Table[Count[g[n], p_ /; s[p] < 2], {n, z}] (*A238658*)
Table[Count[g[n], p_ /; s[p] <= 2], {n, z}] (*A238659*)
Table[Count[g[n], p_ /; s[p] == 2], {n, z}] (*A238660*)
Table[Count[g[n], p_ /; s[p] > 2], {n, z}] (*A238661*)
Table[Count[g[n], p_ /; s[p] >= 2], {n, z}] (*A238662*)
t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]]
ListPlot[Sort[t[30]]] (* plot of st deviations of partitions of 30 *)
(* Second program: *)
b[n_, i_, m_, s_, c_] := b[n, i, m, s, c] = If[n == 0, If[s/c - (m/c)^2 >= 4, 1, 0], If[i == 1, b[0, 0, m + n, s + n, c + n], Sum[b[n - i*j, i - 1, m + i*j, s + i^2*j, c + j], {j, 0, n/i}]]];
a[n_] := b[n, n, 0, 0, 0];
Array[a, 50] (* Jean-François Alcover, May 27 2021, after Alois P. Heinz *)
A238658
Number of partitions of n having population standard deviation < 2.
Original entry on oeis.org
1, 2, 3, 5, 7, 10, 14, 19, 25, 33, 44, 57, 72, 92, 114, 143, 179, 216, 267, 321, 389, 470, 562, 668, 798, 946, 1100, 1295, 1521, 1759, 2059, 2392, 2742, 3206, 3674, 4172, 4831, 5566, 6265, 7115, 8089, 9152, 10381, 11664, 13131, 14927, 16666, 18565, 20977
Offset: 1
There are 22 partitions of 8, whose population standard deviations are given by these approximations: 0., 3., 2., 2.35702, 1., 1.69967, 1.73205, 0., 1.24722, 0.942809, 1.22474, 1.2, 0.471405, 1., 0.707107, 0.8, 0.745356, 0., 0.489898, 0.471405, 0.349927, 0, so that a(8) = 19.
-
z = 50; g[n_] := g[n] = IntegerPartitions[n]; c[t_] := c[t] = Length[t]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, c[t]}]/c[t]];
Table[Count[g[n], p_ /; s[p] < 2], {n, z}] (* A238658 *)
Table[Count[g[n], p_ /; s[p] <= 2], {n, z}] (* A238659 *)
Table[Count[g[n], p_ /; s[p] == 2], {n, z}] (* A238660 *)
Table[Count[g[n], p_ /; s[p] > 2], {n, z}] (* A238661 *)
Table[Count[g[n], p_ /; s[p] >= 2], {n, z}] (* A238662 *)
t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]]
ListPlot[Sort[t[30]]] (* plot of st deviations of partitions of 30 *)
(* Second program: *)
b[n_, i_, m_, s_, c_] := b[n, i, m, s, c] = If[n == 0, If[s/c - (m/c)^2 >= 4, 1, 0], If[i == 1, b[0, 0, m + n, s + n, c + n], Sum[b[n - i*j, i - 1, m + i*j, s + i^2*j, c + j], {j, 0, n/i}]]];
a[n_] := PartitionsP[n] - b[n, n, 0, 0, 0];
Array[a, 50] (* Jean-François Alcover, May 27 2021, after Alois P. Heinz *)
A238661
Number of partitions of n having standard deviation σ > 2.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 2, 5, 7, 12, 18, 29, 42, 61, 85, 118, 164, 223, 299, 399, 530, 693, 888, 1157, 1488, 1901, 2403, 3044, 3807, 4783, 5935, 7368, 9097, 11197, 13721, 16806, 20441, 24868, 30133, 36494, 43895, 52880, 63424, 75900, 90609, 108088, 128404
Offset: 1
There are 22 partitions of 8, whose standard deviations are given by these approximations: 0., 3., 2., 2.35702, 1., 1.69967, 1.73205, 0., 1.24722, 0.942809, 1.22474, 1.2, 0.471405, 1., 0.707107, 0.8, 0.745356, 0., 0.489898, 0.471405, 0.349927, 0, so that a(8) = 2.
-
z = 50; g[n_] := g[n] = IntegerPartitions[n]; c[t_] := c[t] = Length[t]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, c[t]}]/c[t]];
Table[Count[g[n], p_ /; s[p] < 2], {n, z}] (*A238658*)
Table[Count[g[n], p_ /; s[p] <= 2], {n, z}] (*A238659*)
Table[Count[g[n], p_ /; s[p] == 2], {n, z}] (*A238660*)
Table[Count[g[n], p_ /; s[p] > 2], {n, z}] (*A238661*)
Table[Count[g[n], p_ /; s[p] >= 2], {n, z}] (*A238662*)
t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]]
ListPlot[Sort[t[30]]] (*plot of st deviations of partitions of 30*)
A238659
Number of partitions of n having standard deviation σ <= 2.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 14, 20, 25, 35, 44, 59, 72, 93, 115, 146, 179, 221, 267, 328, 393, 472, 562, 687, 801, 948, 1109, 1315, 1521, 1797, 2059, 2414, 2775, 3213, 3686, 4256, 4831, 5574, 6317, 7205, 8089, 9279, 10381, 11751, 13234, 14949, 16666, 18869, 20986
Offset: 1
There are 22 partitions of 8, whose standard deviations are given by these approximations: 0., 3., 2., 2.35702, 1., 1.69967, 1.73205, 0., 1.24722, 0.942809, 1.22474, 1.2, 0.471405, 1., 0.707107, 0.8, 0.745356, 0., 0.489898, 0.471405, 0.349927, 0, so that a(8) = 20.
-
z = 50; g[n_] := g[n] = IntegerPartitions[n]; c[t_] := c[t] = Length[t]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, c[t]}]/c[t]];
Table[Count[g[n], p_ /; s[p] < 2], {n, z}] (*A238658*)
Table[Count[g[n], p_ /; s[p] <= 2], {n, z}] (*A238659*)
Table[Count[g[n], p_ /; s[p] == 2], {n, z}] (*A238660*)
Table[Count[g[n], p_ /; s[p] > 2], {n, z}] (*A238661*)
Table[Count[g[n], p_ /; s[p] >= 2], {n, z}] (*A238662*)
t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]]
ListPlot[Sort[t[30]]] (*plot of st deviations of partitions of 30*)
A371462
Numbers such that the arithmetic mean of its digits is equal to the population standard deviation of its digits.
Original entry on oeis.org
0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 1001, 1010, 1014, 1041, 1049, 1094, 1100, 1104, 1140, 1401, 1409, 1410, 1490, 1904, 1940, 2002, 2020, 2028, 2082, 2200, 2208, 2280, 2802, 2820, 3003, 3030, 3300, 4004, 4011, 4019, 4040, 4091, 4101, 4109, 4110, 4190, 4400, 4901, 4910
Offset: 1
1014 is a term since the mean of the digits is (1 + 0 + 1 + 4)/4 = 3/2 and the standard deviation of the digits is sqrt(((1-3/2)^2 + (0-3/2)^2 + (1-3/2)^2 + (4-3/2)^2)/4) = sqrt((1/4 + 9/4 + 1/4 + 25/4)/4) = sqrt(9/4) = 3/2.
-
filter:= proc(x) local F,n,mu,i;
F:= convert(x,base,10);
n:= nops(F);
mu:= convert(F,`+`)/n;
evalb(2*mu^2 = add(F[i]^2,i=1..n)/n)
end proc:
select(filter, [$0..10000]); # Robert Israel, Mar 24 2024
-
DigStd[n_]:=If[n==0||IntegerLength[n]==1, 0, Sqrt[(IntegerLength[n]-1)/IntegerLength[n]]StandardDeviation[IntegerDigits[n]]]; Select[Range[0, 5000], Mean[IntegerDigits[#]]==DigStd[#]&]
-
from itertools import count, islice
def A371462_gen(startvalue=0): # generator of terms >= startvalue
return filter(lambda n:sum(map(int,(s:=str(n))))**2<<1 == len(s)*sum(int(d)**2 for d in s), count(max(startvalue,0)))
A371462_list = list(islice(A371462_gen(),20)) # Chai Wah Wu, Mar 28 2024
A371463
Numbers such that the arithmetic mean of its digits is equal to twice the population standard deviation of its digits.
Original entry on oeis.org
0, 13, 26, 31, 39, 62, 93, 1133, 1313, 1331, 1779, 1797, 1977, 2266, 2626, 2662, 3113, 3131, 3311, 3399, 3939, 3993, 6226, 6262, 6622, 7179, 7197, 7719, 7791, 7917, 7971, 9177, 9339, 9393, 9717, 9771, 9933, 10111, 11011, 11101, 11110, 11123, 11132, 11213, 11231
Offset: 1
1133 is a term since the mean of the digits is (1 + 1 + 3 + 3)/4 = 2 and the standard deviation of the digits is sqrt(((1-2)^2 + (1-2)^2 + (3-2)^2 + (3-2)^2)/4) = 1.
-
DigStd[n_]:=If[n==0||IntegerLength[n]==1, 0, Sqrt[(IntegerLength[n]-1)/IntegerLength[n]]StandardDeviation[IntegerDigits[n]]]; Select[Range[0, 12000], Mean[IntegerDigits[#]]==2DigStd[#]&]
-
from itertools import count, islice
def A371463_gen(startvalue=0): # generator of terms >= startvalue
return filter(lambda n:5*sum(s:=tuple(map(int,str(n))))**2 == len(s)*sum(d**2 for d in s)<<2, count(max(startvalue,0)))
A371463_list = list(islice(A371463_gen(),20)) # Chai Wah Wu, Mar 30 2024
A371464
Numbers such that the arithmetic mean of its digits is equal to three times the population standard deviation of its digits.
Original entry on oeis.org
0, 12, 21, 24, 36, 42, 48, 63, 84, 1122, 1212, 1221, 2112, 2121, 2211, 2244, 2424, 2442, 2556, 2565, 2655, 3366, 3447, 3474, 3636, 3663, 3744, 4224, 4242, 4347, 4374, 4422, 4437, 4473, 4488, 4734, 4743, 4848, 4884, 5256, 5265, 5526, 5562, 5625, 5652, 6255, 6336, 6363
Offset: 1
2244 is a term since the mean of the digits is (2 + 2 + 4 + 4)/4 = 3 and the standard deviation of the digits is sqrt(((2-3)^2 + (2-3)^2 + (4-3)^2 + (4-3)^2)/4) = 1.
-
DigStd[n_]:=If[n==0||IntegerLength[n]==1, 0, Sqrt[(IntegerLength[n]-1)/IntegerLength[n]]StandardDeviation[IntegerDigits[n]]]; Select[Range[0, 6400], Mean[IntegerDigits[#]]==3DigStd[#]&]
-
from itertools import count, islice
def A371464_gen(startvalue=0): # generator of terms >= startvalue
return filter(lambda n:10*sum(s:=tuple(map(int,str(n))))**2 == 9*len(s)*sum(d**2 for d in s), count(max(startvalue,0)))
A371464_list = list(islice(A371464_gen(),20)) # Chai Wah Wu, Mar 30 2024
Showing 1-7 of 7 results.
Comments