A238664 Primes p such that (p+2)^2+2 is prime but (p+1)^2+1 is not prime.
7, 31, 37, 43, 79, 97, 103, 241, 271, 307, 367, 373, 421, 499, 547, 571, 601, 607, 709, 751, 883, 907, 967, 1033, 1129, 1213, 1231, 1237, 1327, 1423, 1597, 1609, 1621, 1747, 1801, 1867, 1933, 1951, 1993, 2017, 2131, 2137, 2203, 2221, 2281, 2287, 2647, 2659
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Column k=2 of A238086.
Programs
-
Mathematica
Select[Prime[Range[400]],PrimeQ[(#+2)^2+2]&&CompositeQ[(#+1)^2+1]&] (* Harvey P. Dale, Jul 07 2019 *)