A238684 a(1) = a(2) = 1; for n > 2, a(n) is the product of prime factors of the n-th Fibonacci number.
1, 1, 2, 3, 5, 2, 13, 21, 34, 55, 89, 6, 233, 377, 610, 987, 1597, 646, 4181, 6765, 10946, 17711, 28657, 966, 15005, 121393, 196418, 317811, 514229, 208010, 1346269, 2178309, 3524578, 5702887, 9227465, 207366, 24157817, 39088169, 63245986, 102334155, 165580141, 66978574, 433494437, 701408733, 1134903170
Offset: 1
Keywords
Examples
a(12) = 6 since F(12) = 144 = 2^4 * 3^2 and 2 * 3 = 6.
Links
- Robert Israel, Table of n, a(n) for n = 1..350
Programs
-
Maple
f:= n -> convert(numtheory:-factorset(combinat:-fibonacci(n)),`*`): map(f, [$1..100]); # Robert Israel, Nov 10 2023
-
Mathematica
Table[Times@@Part[Flatten[FactorInteger[Fibonacci[n]]], 1 ;; -2 ;; 2], {n, 3, 50}] (* Alonso del Arte, Mar 02 2014 *)
-
PARI
a(n) = my(f = factor(fibonacci(n))); prod(i=1, #f~, f[i, 1]); \\ Michel Marcus, Mar 02 2014
Comments