cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238748 Numbers k such that each integer that appears in the prime signature of k appears an even number of times.

Original entry on oeis.org

1, 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194
Offset: 1

Views

Author

Matthew Vandermast, May 08 2014

Keywords

Comments

Values of n for which all numbers in row A238747(n) are even. Also, numbers n such that A000005(n^m) is a perfect square for all nonnegative integers m; numbers n such that A181819(n) is a perfect square; numbers n such that A182860(n) is odd.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 3, 33, 314, 3119, 31436, 315888, 3162042, 31626518, 316284320, 3162915907, ... . Apparently, the asymptotic density of this sequence exists and equals 0.3162... . - Amiram Eldar, Nov 28 2023

Examples

			The prime signature of 36 = 2^2 * 3^2 is {2,2}. One distinct integer (namely, 2) appears in the prime signature, and it appears an even number of times (2 times). Hence, 36 appears in the sequence.
The prime factorization of 1260 = 2^2 * 3^2 * 5^1 * 7^1. Exponent 2 occurs twice (an even number of times), as well as exponent 1, thus 1260 is included. It is also the first term k > 1 in this sequence for which A182850(k) = 4, not 3. - _Antti Karttunen_, Feb 06 2016
		

Crossrefs

Programs

  • Mathematica
    q[n_] := n == 1 || AllTrue[Tally[FactorInteger[n][[;; , 2]]][[;; , 2]], EvenQ]; Select[Range[200], q] (* Amiram Eldar, Nov 28 2023 *)
  • PARI
    is(n) = {my(e = factor(n)[, 2], m = #e); if(m%2, return(0)); e = vecsort(e); forstep(i = 1, m, 2, if(e[i] != e[i+1], return(0))); 1;} \\ Amiram Eldar, Nov 28 2023
  • Scheme
    (define A238748 (MATCHING-POS 1 1 (lambda (n) (square? (A181819 n)))))
    (define (square? n) (not (zero? (A010052 n))))
    ;; Requires also MATCHING-POS macro from my IntSeq-library - Antti Karttunen, Feb 06 2016