A238748 Numbers k such that each integer that appears in the prime signature of k appears an even number of times.
1, 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194
Offset: 1
Keywords
Examples
The prime signature of 36 = 2^2 * 3^2 is {2,2}. One distinct integer (namely, 2) appears in the prime signature, and it appears an even number of times (2 times). Hence, 36 appears in the sequence. The prime factorization of 1260 = 2^2 * 3^2 * 5^1 * 7^1. Exponent 2 occurs twice (an even number of times), as well as exponent 1, thus 1260 is included. It is also the first term k > 1 in this sequence for which A182850(k) = 4, not 3. - _Antti Karttunen_, Feb 06 2016
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
q[n_] := n == 1 || AllTrue[Tally[FactorInteger[n][[;; , 2]]][[;; , 2]], EvenQ]; Select[Range[200], q] (* Amiram Eldar, Nov 28 2023 *)
-
PARI
is(n) = {my(e = factor(n)[, 2], m = #e); if(m%2, return(0)); e = vecsort(e); forstep(i = 1, m, 2, if(e[i] != e[i+1], return(0))); 1;} \\ Amiram Eldar, Nov 28 2023
-
Scheme
(define A238748 (MATCHING-POS 1 1 (lambda (n) (square? (A181819 n))))) (define (square? n) (not (zero? (A010052 n)))) ;; Requires also MATCHING-POS macro from my IntSeq-library - Antti Karttunen, Feb 06 2016
Comments