A238750 Number T(n,k) of standard Young tableaux with n cells and largest value n in row k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 4, 3, 2, 1, 0, 10, 7, 5, 3, 1, 0, 26, 20, 14, 11, 4, 1, 0, 76, 56, 44, 31, 19, 5, 1, 0, 232, 182, 139, 106, 69, 29, 6, 1, 0, 764, 589, 475, 351, 265, 127, 41, 7, 1, 0, 2620, 2088, 1658, 1303, 971, 583, 209, 55, 8, 1
Offset: 0
Examples
The 10 tableaux with n=4 cells sorted by the number of the row containing the largest value 4 are: :[1 4] [1 2 4] [1 3 4] [1 2 3 4]:[1 2] [1 3] [1 2 3]:[1 2] [1 3]:[1]: :[2] [3] [2] :[3 4] [2 4] [4] :[3] [2] :[2]: :[3] : :[4] [4] :[3]: : : : :[4]: : --------------1-------------- : --------2-------- : ----3---- : 4 : Their corresponding ballot sequences are: [1,2,3,1], [1,1,2,1], [1,2,1,1], [1,1,1,1], [1,1,2,2], [1,2,1,2], [1,1,1,2], [1,1,2,3], [1,2,1,3], [1,2,3,4]. Thus row 4 = [0, 4, 3, 2, 1]. Triangle T(n,k) begins: 00: 1; 01: 0, 1; 02: 0, 1, 1; 03: 0, 2, 1, 1; 04: 0, 4, 3, 2, 1; 05: 0, 10, 7, 5, 3, 1; 06: 0, 26, 20, 14, 11, 4, 1; 07: 0, 76, 56, 44, 31, 19, 5, 1; 08: 0, 232, 182, 139, 106, 69, 29, 6, 1; 09: 0, 764, 589, 475, 351, 265, 127, 41, 7, 1; 10: 0, 2620, 2088, 1658, 1303, 971, 583, 209, 55, 8, 1;
Links
- Joerg Arndt and Alois P. Heinz, Rows n = 0..60, flattened
- Wikipedia, Young tableau
Programs
-
Maple
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+ add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= proc(l) local n; n:=nops(l); `if`(n=0, 1, add( `if`(i=n or l[i]>l[i+1], x^i *h(subsop(i= `if`(i=n and l[n]=1, NULL, l[i]-1), l)), 0), i=1..n)) end: b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), add(b(n-i*j, i-1, [l[], i$j]), j=0..n/i)): T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, n, [])): seq(T(n), n=0..12);
-
Mathematica
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+ Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, l[[i]]}], {i, n}]]; g[l_] := With[{ n = Length[l]}, If[n == 0, 1, Sum[ If[i == n || l[[i]] > l[[i + 1]], x^i *h[ReplacePart[l, i -> If[i == n && l[[n]] == 1, Nothing, l[[i]] - 1]]], 0], {i, n}]]]; b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]], Sum[b[n - i*j, i - 1, Join[l, Table[i, {j}]]], {j, 0, n/i}]]; T[n_] := CoefficientList[b[n, n, {}], x]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 27 2021, after Maple code *)
Comments