cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A238124 Number of ballot sequences of length n having exactly 1 largest part.

Original entry on oeis.org

0, 1, 1, 3, 7, 20, 56, 182, 589, 2088, 7522, 28820, 113092, 464477, 1955760, 8541860, 38215077, 176316928, 832181774, 4033814912, 19973824386, 101257416701, 523648869394, 2765873334372, 14883594433742, 81646343582385, 455752361294076, 2589414185398032
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 21 2014

Keywords

Comments

Also number of standard Young tableaux with last row of length 1.
Column k=1 of A238123.
With different offset column k=2 of A238750.

Examples

			The a(5)=20 ballot sequences of length 5 with 1 maximal element are (dots for zeros):
01:  [ . . . . 1 ]
02:  [ . . . 1 . ]
03:  [ . . . 1 2 ]
04:  [ . . 1 . . ]
05:  [ . . 1 . 2 ]
06:  [ . . 1 1 2 ]
07:  [ . . 1 2 . ]
08:  [ . . 1 2 1 ]
09:  [ . . 1 2 3 ]
10:  [ . 1 . . . ]
11:  [ . 1 . . 2 ]
12:  [ . 1 . 1 2 ]
13:  [ . 1 . 2 . ]
14:  [ . 1 . 2 1 ]
15:  [ . 1 . 2 3 ]
16:  [ . 1 2 . . ]
17:  [ . 1 2 . 1 ]
18:  [ . 1 2 . 3 ]
19:  [ . 1 2 3 . ]
20:  [ . 1 2 3 4 ]
		

Crossrefs

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
           add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) `if`(n=0, 0, `if`(i=1, h([l[], 1$n]),
           add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i)))
        end:
    a:= n-> g(n, n, []):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, l_List] := b[n, l] = If[n < 1, x^l[[-1]], b[n - 1, Append[l, 1]] + Sum[If[i == 1 || l[[i - 1]] > l[[i]], b[n - 1, ReplacePart[l, i -> l[[i]] + 1]], 0], {i, 1, Length[l]}]]; a[0] = 0; a[n_] := Coefficient[b[n - 1, {1}], x, 1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 10 2015, after A238123 *)
  • PARI
    A238124(n)=A238123(n,1) \\ M. F. Hasler, Jun 03 2018

A246731 Number of standard Young tableaux with 2n cells and largest value in row n.

Original entry on oeis.org

1, 1, 3, 14, 106, 971, 10616, 123330, 1557753, 20543071, 287087740, 4168599808, 63349129196, 996257865899, 16268585660692, 273934662738565, 4763228582494891, 85139749375446911, 1565168115090666500, 29500470904432682460, 570091884338189871500
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Sep 02 2014

Keywords

Comments

Also the number of ballot sequences of length 2n having last value n.
Also the number of standard Young tableaux with 2n cells where the row containing the largest value has length n.
Also the number of ballot sequences of length 2n where the last value has multiplicity n.

Crossrefs

Cf. A238750.

Formula

a(n) = A238750(2n,n).
Showing 1-2 of 2 results.