A238123
Triangle read by rows: T(n,k) gives the number of ballot sequences of length n having k largest parts, n >= k >= 0.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 7, 2, 0, 1, 0, 20, 5, 0, 0, 1, 0, 56, 14, 5, 0, 0, 1, 0, 182, 35, 14, 0, 0, 0, 1, 0, 589, 132, 28, 14, 0, 0, 0, 1, 0, 2088, 399, 90, 42, 0, 0, 0, 0, 1, 0, 7522, 1556, 285, 90, 42, 0, 0, 0, 0, 1, 0, 28820, 5346, 1232, 165, 132, 0, 0, 0, 0, 0, 1
Offset: 0
Triangle starts:
00: 1;
01: 0, 1;
02: 0, 1, 1;
03, 0, 3, 0, 1;
04: 0, 7, 2, 0, 1;
05: 0, 20, 5, 0, 0, 1;
06: 0, 56, 14, 5, 0, 0, 1;
07: 0, 182, 35, 14, 0, 0, 0, 1;
08: 0, 589, 132, 28, 14, 0, 0, 0, 1;
09: 0, 2088, 399, 90, 42, 0, 0, 0, 0, 1;
10: 0, 7522, 1556, 285, 90, 42, 0, 0, 0, 0, 1;
11: 0, 28820, 5346, 1232, 165, 132, 0, 0, 0, 0, 0, 1;
12: 0, 113092, 21515, 4378, 737, 297, 132, 0, 0, 0, 0, 0, 1;
13: 0, 464477, 82940, 17082, 3003, 572, 429, 0, 0, 0, 0, 0, 0, 1;
...
The T(6,2)=14 ballot sequences of length 6 with 2 maximal elements are (dots for zeros):
01: [ . . . . 1 1 ]
02: [ . . . 1 . 1 ]
03: [ . . . 1 1 . ]
04: [ . . 1 . . 1 ]
05: [ . . 1 . 1 . ]
06: [ . . 1 1 . . ]
07: [ . . 1 1 2 2 ]
08: [ . . 1 2 1 2 ]
09: [ . 1 . . . 1 ]
10: [ . 1 . . 1 . ]
11: [ . 1 . 1 . . ]
12: [ . 1 . 1 2 2 ]
13: [ . 1 . 2 1 2 ]
14: [ . 1 2 . 1 2 ]
The T(8,4)=14 such ballot sequences of length 8 and 4 maximal elements are:
01: [ . . . . 1 1 1 1 ]
02: [ . . . 1 . 1 1 1 ]
03: [ . . . 1 1 . 1 1 ]
04: [ . . . 1 1 1 . 1 ]
05: [ . . 1 . . 1 1 1 ]
06: [ . . 1 . 1 . 1 1 ]
07: [ . . 1 . 1 1 . 1 ]
08: [ . . 1 1 . . 1 1 ]
09: [ . . 1 1 . 1 . 1 ]
10: [ . 1 . . . 1 1 1 ]
11: [ . 1 . . 1 . 1 1 ]
12: [ . 1 . . 1 1 . 1 ]
13: [ . 1 . 1 . . 1 1 ]
14: [ . 1 . 1 . 1 . 1 ]
These are the (reversed) Dyck words of semi-length 4.
The terms T(2*n,n) are the Catalan numbers (
A000108).
Columns k=0-10 give:
A000007,
A238124,
A244099,
A244100,
A244101,
A244102,
A244103,
A244104,
A244105,
A244106,
A244107.
-
b:= proc(n, l) option remember; `if`(n<1, x^l[-1],
b(n-1, [l[], 1]) +add(`if`(i=1 or l[i-1]>l[i],
b(n-1, subsop(i=l[i]+1, l)), 0), i=1..nops(l)))
end:
T:= n->`if`(n=0, 1, (p->seq(coeff(p, x, i), i=0..n))(b(n-1, [1]))):
seq(T(n), n=0..12);
# second Maple program (counting SYT):
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) `if`(n=0 or i=1, h([l[], 1$n])*x^`if`(n>0, 1,
`if`(l=[], 0, l[-1])), g(n, i-1, l)+
`if`(i>n, 0, g(n-i, i, [l[], i])))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(g(n, n, [])):
seq(T(n), n=0..12);
-
b[n_, l_List] := b[n, l] = If[n<1, x^l[[-1]], b[n-1, Append[l, 1]] + Sum[If[i == 1 || l[[i-1]] > l[[i]], b[n-1, ReplacePart[l, i -> l[[i]] + 1]], 0], {i, 1, Length[l]}]]; T[n_] := If[n == 0, 1, Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n-1, {1}]]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 07 2015, translated from Maple *)
-
(A238123(n,k)=if(k, vecsum(apply(p->n!/Hook(Vecrev(p)), select(p->p[1]==k,partitions(n,[k,n])))), !n)); Hook(P,h=vector(P[1]),L=P[#P])={prod(i=1, L, h[i]=L-i+1)*prod(i=1,#P-1, my(D=-L+L=P[#P-i]); prod(k=0,L-1,h[L-k]+=min(k,D)+1))} \\ M. F. Hasler, Jun 03 2018
A238750
Number T(n,k) of standard Young tableaux with n cells and largest value n in row k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 4, 3, 2, 1, 0, 10, 7, 5, 3, 1, 0, 26, 20, 14, 11, 4, 1, 0, 76, 56, 44, 31, 19, 5, 1, 0, 232, 182, 139, 106, 69, 29, 6, 1, 0, 764, 589, 475, 351, 265, 127, 41, 7, 1, 0, 2620, 2088, 1658, 1303, 971, 583, 209, 55, 8, 1
Offset: 0
The 10 tableaux with n=4 cells sorted by the number of the row containing the largest value 4 are:
:[1 4] [1 2 4] [1 3 4] [1 2 3 4]:[1 2] [1 3] [1 2 3]:[1 2] [1 3]:[1]:
:[2] [3] [2] :[3 4] [2 4] [4] :[3] [2] :[2]:
:[3] : :[4] [4] :[3]:
: : : :[4]:
: --------------1-------------- : --------2-------- : ----3---- : 4 :
Their corresponding ballot sequences are: [1,2,3,1], [1,1,2,1], [1,2,1,1], [1,1,1,1], [1,1,2,2], [1,2,1,2], [1,1,1,2], [1,1,2,3], [1,2,1,3], [1,2,3,4]. Thus row 4 = [0, 4, 3, 2, 1].
Triangle T(n,k) begins:
00: 1;
01: 0, 1;
02: 0, 1, 1;
03: 0, 2, 1, 1;
04: 0, 4, 3, 2, 1;
05: 0, 10, 7, 5, 3, 1;
06: 0, 26, 20, 14, 11, 4, 1;
07: 0, 76, 56, 44, 31, 19, 5, 1;
08: 0, 232, 182, 139, 106, 69, 29, 6, 1;
09: 0, 764, 589, 475, 351, 265, 127, 41, 7, 1;
10: 0, 2620, 2088, 1658, 1303, 971, 583, 209, 55, 8, 1;
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
g:= proc(l) local n; n:=nops(l); `if`(n=0, 1, add(
`if`(i=n or l[i]>l[i+1], x^i *h(subsop(i=
`if`(i=n and l[n]=1, NULL, l[i]-1), l)), 0), i=1..n))
end:
b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]),
add(b(n-i*j, i-1, [l[], i$j]), j=0..n/i)):
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, n, [])):
seq(T(n), n=0..12);
-
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+
Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, l[[i]]}], {i, n}]];
g[l_] := With[{ n = Length[l]}, If[n == 0, 1, Sum[
If[i == n || l[[i]] > l[[i + 1]], x^i *h[ReplacePart[l, i ->
If[i == n && l[[n]] == 1, Nothing, l[[i]] - 1]]], 0], {i, n}]]];
b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]],
Sum[b[n - i*j, i - 1, Join[l, Table[i, {j}]]], {j, 0, n/i}]];
T[n_] := CoefficientList[b[n, n, {}], x];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 27 2021, after Maple code *)
A369588
Triangular array read by rows: T(m,n) = number of Yamanouchi words of length m that start with n, m >= 1, n = 1..m.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 4, 3, 2, 1, 10, 7, 5, 3, 1, 26, 20, 14, 11, 4, 1, 76, 56, 44, 31, 19, 5, 1, 232, 182, 139, 106, 69, 29, 6, 1, 764, 589, 475, 351, 265, 127, 41, 7, 1, 2620, 2088, 1658, 1303, 971, 583, 209, 55, 8, 1, 9496, 7522, 6146, 4846, 3734, 2446, 1106, 319, 71, 9, 1, 35696, 28820, 23495, 19108, 14629, 10616, 5323, 1904, 461, 89, 10, 1
Offset: 1
Array starts with
m=1: 1
m=2: 1, 1
m=3: 2, 1, 1
m=4: 4, 3, 2, 1
m=5: 10, 7, 5, 3, 1
m=6: 26, 20, 14, 11, 4, 1
m=7: 76, 56, 44, 31, 19, 5, 1
Sum in the m-th row equals T(m+1,1) =
A000085(m).
A369590
a(n) = number of Yamanouchi words of length n that start with 3.
Original entry on oeis.org
0, 0, 1, 2, 5, 14, 44, 139, 475, 1658, 6146, 23495, 93840, 385956, 1643862, 7193783, 32446635, 150049734, 712619582, 3462870079
Offset: 1
Showing 1-4 of 4 results.
Comments