cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238779 Number of palindromic partitions of n with greatest part of multiplicity 2.

Original entry on oeis.org

0, 1, 0, 1, 1, 2, 2, 4, 3, 7, 6, 11, 9, 18, 15, 27, 23, 40, 35, 59, 51, 85, 75, 119, 106, 168, 150, 231, 208, 316, 286, 428, 388, 575, 525, 764, 700, 1012, 929, 1327, 1223, 1732, 1601, 2246, 2080, 2898, 2692, 3715, 3459, 4748, 4428, 6032, 5638, 7635, 7150
Offset: 1

Views

Author

Clark Kimberling, Mar 05 2014

Keywords

Comments

Palindromic partitions are defined at A025065.

Examples

			a(8) counts these partitions (each written as a palindrome):  44, 323, 1331, 112211.
		

Crossrefs

Programs

  • Mathematica
    z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Max[#]] == k) &]
    Table[p[n, 1], {n, 1, 12}]
    t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A000009(n-1), n>=1 *)
    Table[p[n, 2], {n, 1, 12}]
    t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238779 *)
    Table[p[n, 3], {n, 1, 12}]
    t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A087897(n-3), n>=3 *)
    Table[p[n, 4], {n, 1, 12}]
    t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238780 *)
    (* Peter J. C. Moses, Mar 03 2014 *)