A238779 Number of palindromic partitions of n with greatest part of multiplicity 2.
0, 1, 0, 1, 1, 2, 2, 4, 3, 7, 6, 11, 9, 18, 15, 27, 23, 40, 35, 59, 51, 85, 75, 119, 106, 168, 150, 231, 208, 316, 286, 428, 388, 575, 525, 764, 700, 1012, 929, 1327, 1223, 1732, 1601, 2246, 2080, 2898, 2692, 3715, 3459, 4748, 4428, 6032, 5638, 7635, 7150
Offset: 1
Examples
a(8) counts these partitions (each written as a palindrome): 44, 323, 1331, 112211.
Programs
-
Mathematica
z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Max[#]] == k) &] Table[p[n, 1], {n, 1, 12}] t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A000009(n-1), n>=1 *) Table[p[n, 2], {n, 1, 12}] t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238779 *) Table[p[n, 3], {n, 1, 12}] t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A087897(n-3), n>=3 *) Table[p[n, 4], {n, 1, 12}] t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238780 *) (* Peter J. C. Moses, Mar 03 2014 *)
Comments