A238781 Number of palindromic partitions of n whose least part has multiplicity 1.
1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 4, 2, 6, 4, 6, 4, 10, 5, 12, 7, 16, 8, 20, 10, 27, 14, 32, 16, 44, 19, 53, 25, 69, 31, 84, 36, 108, 47, 130, 55, 167, 67, 202, 83, 252, 99, 305, 119, 380, 146, 456, 173, 564, 208, 676, 250, 826, 298, 991, 352, 1205, 424, 1435
Offset: 1
Examples
a(11) counts these partitions (written as palindromes): [11], [5,1,5], [4,3,4], [2,3,1,3,2].
Programs
-
Mathematica
z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Min[#]] == k) &] Table[p[n, 1], {n, 1, 12}] t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A238781 *) Table[p[n, 2], {n, 1, 12}] t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238782 *) Table[p[n, 3], {n, 1, 12}] t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A238783 *) Table[p[n, 4], {n, 1, 12}] t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238784 *) (* Peter J. C. Moses, Mar 03 2014 *)
Comments