A238801 Triangle T(n,k), read by rows, given by T(n,k) = C(n+1, k+1)*(1-(k mod 2)).
1, 2, 0, 3, 0, 1, 4, 0, 4, 0, 5, 0, 10, 0, 1, 6, 0, 20, 0, 6, 0, 7, 0, 35, 0, 21, 0, 1, 8, 0, 56, 0, 56, 0, 8, 0, 9, 0, 84, 0, 126, 0, 36, 0, 1, 10, 0, 120, 0, 252, 0, 120, 0, 10, 0, 11, 0, 165, 0, 462, 0, 330, 0, 55, 0, 1, 12, 0, 220, 0, 792, 0, 792, 0, 220, 0, 12, 0
Offset: 0
Examples
Triangle begins: 1; 2, 0; 3, 0, 1; 4, 0, 4, 0; 5, 0, 10, 0, 1; 6, 0, 20, 0, 6, 0; 7, 0, 35, 0, 21, 0, 1; 8, 0, 56, 0, 56, 0, 8, 0; 9, 0, 84, 0, 126, 0, 36, 0, 1; 10, 0, 120, 0, 252, 0, 120, 0, 10, 0; etc.
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
Crossrefs
Cf. Columns: A000027, A000292, A000389, A000580, A000582, A001288, A010966, A010968, A010970, A010972, A010974, A010976, A010980, A010982, A010984, A010986, A010988, A010990, A010992, A010994, A010996, A010998, A011000, A017713, A017715, A017717, A017719, A017721, A017723, A017725, A017727, A017729, A017731, A017733, A017735, A017737, A017739, A017741, A017743, A017745, A017747, A017749, A017751, A017753, A017755, A017757, A017759, A017761, A017763.
Programs
-
Mathematica
Table[Binomial[n + 1, k + 1]*(1 - Mod[k , 2]), {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Nov 22 2017 *)
-
PARI
T(n,k) = binomial(n+1, k+1)*(1-(k % 2)); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Nov 23 2017
Formula
G.f.: 1/((1+(y-1)*x)*(1-(y+1)*x)).
T(n,k) = 2*T(n-1,k) + T(n-2,k-2) - T(n-2,k), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0, T(n,k) = 0 if k<0 or if k>n.
Comments