A238858 Triangle T(n,k) read by rows: T(n,k) is the number of length-n ascent sequences with exactly k descents.
1, 1, 0, 2, 0, 0, 4, 1, 0, 0, 8, 7, 0, 0, 0, 16, 33, 4, 0, 0, 0, 32, 131, 53, 1, 0, 0, 0, 64, 473, 429, 48, 0, 0, 0, 0, 128, 1611, 2748, 822, 26, 0, 0, 0, 0, 256, 5281, 15342, 9305, 1048, 8, 0, 0, 0, 0, 512, 16867, 78339, 83590, 21362, 937, 1, 0, 0, 0, 0, 1024, 52905, 376159, 647891, 307660, 35841, 594, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle starts: 00: 1; 01: 1, 0; 02: 2, 0, 0; 03: 4, 1, 0, 0; 04: 8, 7, 0, 0, 0; 05: 16, 33, 4, 0, 0, 0; 06: 32, 131, 53, 1, 0, 0, 0; 07: 64, 473, 429, 48, 0, 0, 0, 0; 08: 128, 1611, 2748, 822, 26, 0, 0, 0, 0; 09: 256, 5281, 15342, 9305, 1048, 8, 0, 0, 0, 0; 10: 512, 16867, 78339, 83590, 21362, 937, 1, 0, 0, 0, 0; 11: 1024, 52905, 376159, 647891, 307660, 35841, 594, 0, 0, 0, 0, 0; 12: 2048, 163835, 1728458, 4537169, 3574869, 834115, 45747, 262, 0, 0, 0, 0, 0; ... The 53 ascent sequences of length 5 together with their numbers of descents are (dots for zeros): 01: [ . . . . . ] 0 28: [ . 1 1 . 1 ] 1 02: [ . . . . 1 ] 0 29: [ . 1 1 . 2 ] 1 03: [ . . . 1 . ] 1 30: [ . 1 1 1 . ] 1 04: [ . . . 1 1 ] 0 31: [ . 1 1 1 1 ] 0 05: [ . . . 1 2 ] 0 32: [ . 1 1 1 2 ] 0 06: [ . . 1 . . ] 1 33: [ . 1 1 2 . ] 1 07: [ . . 1 . 1 ] 1 34: [ . 1 1 2 1 ] 1 08: [ . . 1 . 2 ] 1 35: [ . 1 1 2 2 ] 0 09: [ . . 1 1 . ] 1 36: [ . 1 1 2 3 ] 0 10: [ . . 1 1 1 ] 0 37: [ . 1 2 . . ] 1 11: [ . . 1 1 2 ] 0 38: [ . 1 2 . 1 ] 1 12: [ . . 1 2 . ] 1 39: [ . 1 2 . 2 ] 1 13: [ . . 1 2 1 ] 1 40: [ . 1 2 . 3 ] 1 14: [ . . 1 2 2 ] 0 41: [ . 1 2 1 . ] 2 15: [ . . 1 2 3 ] 0 42: [ . 1 2 1 1 ] 1 16: [ . 1 . . . ] 1 43: [ . 1 2 1 2 ] 1 17: [ . 1 . . 1 ] 1 44: [ . 1 2 1 3 ] 1 18: [ . 1 . . 2 ] 1 45: [ . 1 2 2 . ] 1 19: [ . 1 . 1 . ] 2 46: [ . 1 2 2 1 ] 1 20: [ . 1 . 1 1 ] 1 47: [ . 1 2 2 2 ] 0 21: [ . 1 . 1 2 ] 1 48: [ . 1 2 2 3 ] 0 22: [ . 1 . 1 3 ] 1 49: [ . 1 2 3 . ] 1 23: [ . 1 . 2 . ] 2 50: [ . 1 2 3 1 ] 1 24: [ . 1 . 2 1 ] 2 51: [ . 1 2 3 2 ] 1 25: [ . 1 . 2 2 ] 1 52: [ . 1 2 3 3 ] 0 26: [ . 1 . 2 3 ] 1 53: [ . 1 2 3 4 ] 0 27: [ . 1 1 . . ] 1 There are 16 ascent sequences with no descent, 33 with one, and 4 with 2, giving row 4 [16, 33, 4, 0, 0, 0].
Links
- Joerg Arndt and Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
# b(n, i, t): polynomial in x where the coefficient of x^k is # # the number of postfixes of these sequences of # # length n having k descents such that the prefix # # has rightmost element i and exactly t ascents # b:= proc(n, i, t) option remember; `if`(n=0, 1, expand(add( `if`(ji, 1, 0)), j=0..t+1))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, -1$2)): seq(T(n), n=0..12);
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Sum[If[ji, 1, 0]], {j, 0, t+1}]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, -1, -1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 06 2015, translated from Maple *)
-
Sage
# Transcription of the Maple program R.
= QQ[] @CachedFunction def b(n,i,t): if n==0: return 1 return sum( ( x if ji) ) for j in range(t+2) ) def T(n): return b(n, -1, -1) for n in range(0,10): print(T(n).list())
Comments