cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238861 Compositions with superdiagonal growth: number of compositions (p0, p1, p2, ...) of n with pi - p0 >= i.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 13, 18, 24, 32, 41, 55, 72, 95, 125, 164, 212, 275, 355, 459, 592, 763, 980, 1257, 1605, 2044, 2598, 3298, 4179, 5290, 6685, 8435, 10623, 13353, 16751, 20978, 26228, 32746, 40831, 50850, 63247, 78569, 97475, 120770, 149429, 184641, 227853, 280832, 345722, 425134, 522232, 640847, 785604
Offset: 0

Views

Author

Joerg Arndt, Mar 24 2014

Keywords

Examples

			There are a(12) = 24 such compositions of 12:
01:  [ 1 2 3 6 ]
02:  [ 1 2 4 5 ]
03:  [ 1 2 5 4 ]
04:  [ 1 2 9 ]
05:  [ 1 3 3 5 ]
06:  [ 1 3 4 4 ]
07:  [ 1 3 8 ]
08:  [ 1 4 3 4 ]
09:  [ 1 4 7 ]
10:  [ 1 5 6 ]
11:  [ 1 6 5 ]
12:  [ 1 7 4 ]
13:  [ 1 8 3 ]
14:  [ 1 11 ]
15:  [ 2 3 7 ]
16:  [ 2 4 6 ]
17:  [ 2 5 5 ]
18:  [ 2 6 4 ]
19:  [ 2 10 ]
20:  [ 3 4 5 ]
21:  [ 3 9 ]
22:  [ 4 8 ]
23:  [ 5 7 ]
24:  [ 12 ]
		

Crossrefs

Cf. A238860 (partitions with superdiagonal growth), A000009 (partitions into distinct parts have superdiagonal growth by definition).
Cf. A238859 (compositions of n with subdiagonal growth), A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth).
Cf. A008930 (subdiagonal compositions), A238875 (subdiagonal partitions), A010054 (subdiagonal partitions into distinct parts).
Cf. A219282 (superdiagonal compositions), A238873 (superdiagonal partitions), A238394 (strictly superdiagonal partitions), A238874 (strictly superdiagonal compositions), A025147 (strictly superdiagonal partitions into distinct parts).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i=0, add(b(n-j, j+1), j=1..n),
           add(b(n-j, i+1), j=i..n)))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 26 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, Sum[b[n-j, j+1], {j, 1, n}], Sum[ b[n-j, i+1], {j, i, n}]]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
  • PARI
    N=66; q='q+O('q^N);
    gf = 1 + sum(n=1, N, q^(n*(n+1)/2) / ( (1-q)^(n-1) * (1-q^n) ) );
    v=Vec(gf) \\ Joerg Arndt, Mar 30 2014

Formula

G.f.: 1 + sum(n>=1, q^(n*(n+1)/2) / ( (1-q)^(n-1) * (1-q^n) ) ). [Joerg Arndt, Mar 30 2014]