A238861 Compositions with superdiagonal growth: number of compositions (p0, p1, p2, ...) of n with pi - p0 >= i.
1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 13, 18, 24, 32, 41, 55, 72, 95, 125, 164, 212, 275, 355, 459, 592, 763, 980, 1257, 1605, 2044, 2598, 3298, 4179, 5290, 6685, 8435, 10623, 13353, 16751, 20978, 26228, 32746, 40831, 50850, 63247, 78569, 97475, 120770, 149429, 184641, 227853, 280832, 345722, 425134, 522232, 640847, 785604
Offset: 0
Keywords
Examples
There are a(12) = 24 such compositions of 12: 01: [ 1 2 3 6 ] 02: [ 1 2 4 5 ] 03: [ 1 2 5 4 ] 04: [ 1 2 9 ] 05: [ 1 3 3 5 ] 06: [ 1 3 4 4 ] 07: [ 1 3 8 ] 08: [ 1 4 3 4 ] 09: [ 1 4 7 ] 10: [ 1 5 6 ] 11: [ 1 6 5 ] 12: [ 1 7 4 ] 13: [ 1 8 3 ] 14: [ 1 11 ] 15: [ 2 3 7 ] 16: [ 2 4 6 ] 17: [ 2 5 5 ] 18: [ 2 6 4 ] 19: [ 2 10 ] 20: [ 3 4 5 ] 21: [ 3 9 ] 22: [ 4 8 ] 23: [ 5 7 ] 24: [ 12 ]
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..8000 (terms 0..1000 from Alois P. Heinz)
Crossrefs
Cf. A238860 (partitions with superdiagonal growth), A000009 (partitions into distinct parts have superdiagonal growth by definition).
Cf. A238859 (compositions of n with subdiagonal growth), A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth).
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=0, add(b(n-j, j+1), j=1..n), add(b(n-j, i+1), j=i..n))) end: a:= n-> b(n, 0): seq(a(n), n=0..60); # Alois P. Heinz, Mar 26 2014
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, Sum[b[n-j, j+1], {j, 1, n}], Sum[ b[n-j, i+1], {j, i, n}]]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
-
PARI
N=66; q='q+O('q^N); gf = 1 + sum(n=1, N, q^(n*(n+1)/2) / ( (1-q)^(n-1) * (1-q^n) ) ); v=Vec(gf) \\ Joerg Arndt, Mar 30 2014
Formula
G.f.: 1 + sum(n>=1, q^(n*(n+1)/2) / ( (1-q)^(n-1) * (1-q^n) ) ). [Joerg Arndt, Mar 30 2014]