A238872 Number of strongly unimodal compositions of n with absolute difference of successive parts = 1.
1, 1, 1, 3, 2, 3, 3, 4, 3, 6, 4, 3, 5, 6, 4, 9, 5, 3, 7, 7, 5, 9, 6, 6, 8, 9, 5, 9, 8, 6, 10, 6, 5, 15, 8, 9, 10, 7, 7, 12, 10, 3, 11, 15, 7, 15, 8, 6, 13, 12, 9, 12, 9, 9, 14, 12, 7, 15, 12, 6, 15, 13, 6, 21, 12, 12, 13, 6, 11, 15, 15, 9, 14, 12, 8, 24, 10, 9
Offset: 0
Keywords
Examples
The a(33) = 15 such compositions of 33 are: 01: [ 1 2 3 4 5 6 5 4 3 ] 02: [ 2 3 4 5 6 7 6 ] 03: [ 3 4 5 6 5 4 3 2 1 ] 04: [ 3 4 5 6 7 8 ] 05: [ 4 5 6 7 6 5 ] 06: [ 5 6 7 6 5 4 ] 07: [ 5 6 7 8 7 ] 08: [ 6 7 6 5 4 3 2 ] 09: [ 7 8 7 6 5 ] 10: [ 8 7 6 5 4 3 ] 11: [ 10 11 12 ] 12: [ 12 11 10 ] 13: [ 16 17 ] 14: [ 17 16 ] 15: [ 33 ] G.f. = 1 + x + x^2 + 3*x^3 + 2*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 3*x^8 + 6*x^9 + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Dandan Chen and Rong Chen, Generating Functions of the Hurwitz Class Numbers Associated with Certain Mock Theta Functions, arXiv:2107.04809 [math.NT], 2021.
Programs
-
Mathematica
a[ n_] := If[ n < 1, Boole[n == 0], If[ OddQ[n], 1, 1/3] Length @ FindInstance[ {x >= 0, y >= 0, z >= 0, x y + y z + z x + x + y + z + 1 == n}, {x, y, z}, Integers, 10^9]]; (* Michael Somos, Jul 04 2015 *) a[ n_] := If[ n < 1, Boole[n == 0], Length @ FindInstance[ {1 <= y <= n, 1 <= x <= y, 1 <= z <= y, y^2 + (x - x^2 + z - z^2) / 2 == n}, {x, y, z}, Integers, 10^9]]; (* Michael Somos, Jul 04 2015 *)
-
PARI
\\ generate the compositions a(n)= { if ( n==0, return(1) ); my( ret=0 ); my( as, ts ); for (f=1, n, \\ first part as = 0; for (p=f, n, \\ numper of parts in rising half as += p; \\ ascending sum if ( as > n, break() ); if ( as == n, ret+=1; break() ); ts = as; \\ total sum forstep (q=p-1, 1, -1, ts += q; \\ descending sum if ( ts > n, break() ); if ( ts == n, ret+=1; break() ); ); ); ); return( ret ); } v=vector(100,n,a(n-1))
Formula
a(2*n) = A130695(2*n) / 3 if n>0. a(2*n + 1) = A130695(2*n + 1) = 3 * H(8*n + 3), where H is the Hurwitz class number, if n>0. - Michael Somos, Jul 04 2015