A238874 Strictly superdiagonal compositions: compositions (p1, p2, p3, ...) of n such that pi > i.
1, 0, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 25, 33, 44, 59, 79, 105, 138, 180, 234, 304, 395, 513, 665, 859, 1105, 1416, 1809, 2306, 2935, 3731, 4737, 6005, 7598, 9593, 12085, 15192, 19061, 23875, 29861, 37299, 46532, 57978, 72145, 89650, 111243, 137837, 170545, 210725, 260034, 320492, 394557, 485213, 596074, 731508
Offset: 0
Keywords
Examples
The a(13) = 25 such composition of 13 are: 01: [ 2 3 8 ] 02: [ 2 4 7 ] 03: [ 2 5 6 ] 04: [ 2 6 5 ] 05: [ 2 7 4 ] 06: [ 2 11 ] 07: [ 3 3 7 ] 08: [ 3 4 6 ] 09: [ 3 5 5 ] 10: [ 3 6 4 ] 11: [ 3 10 ] 12: [ 4 3 6 ] 13: [ 4 4 5 ] 14: [ 4 5 4 ] 15: [ 4 9 ] 16: [ 5 3 5 ] 17: [ 5 4 4 ] 18: [ 5 8 ] 19: [ 6 3 4 ] 20: [ 6 7 ] 21: [ 7 6 ] 22: [ 8 5 ] 23: [ 9 4 ] 24: [ 10 3 ] 25: [ 13 ]
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A219282 (superdiagonal compositions), A238873 (superdiagonal partitions), A238394 (strictly superdiagonal partitions), A025147 (strictly superdiagonal partitions into distinct parts).
Cf. A238875 (subdiagonal partitions), A008930 (subdiagonal compositions), A010054 (subdiagonal partitions into distinct parts).
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-j, i+1), j=i..n)) end: a:= n-> b(n, 2): seq(a(n), n=0..60); # Alois P. Heinz, Mar 24 2014
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n-j, i+1], {j, i, n}]]; a[n_] := b[n, 2]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 23 2015, after Alois P. Heinz *)
-
PARI
N=66; q='q+O('q^N); gf=sum(n=0,N, q^(n*(n+3)/2) / (1-q)^n ); v=Vec(gf) \\ Joerg Arndt, Mar 30 2014
Formula
G.f.: Sum_{n>=0} q^(n*(n+3)/2) / (1-q)^n. - Joerg Arndt, Mar 30 2014