A238875 Subdiagonal partitions: number of partitions (p1, p2, p3, ...) of n with pi <= i.
1, 1, 1, 2, 2, 4, 5, 7, 10, 15, 18, 26, 35, 47, 61, 80, 103, 138, 175, 224, 283, 362, 455, 577, 721, 898, 1111, 1380, 1701, 2106, 2577, 3156, 3844, 4680, 5671, 6879, 8312, 10034, 12060, 14478, 17319, 20715, 24703, 29442, 35004, 41578, 49247, 58278, 68796, 81132, 95502, 112320, 131877, 154705, 181158, 211908, 247475
Offset: 0
Keywords
Examples
The a(11) = 26 such partitions of 11 are: 01: [ 1 1 1 1 1 1 1 1 1 1 1 ] 02: [ 1 1 1 1 1 1 1 1 1 2 ] 03: [ 1 1 1 1 1 1 1 1 3 ] 04: [ 1 1 1 1 1 1 1 2 2 ] 05: [ 1 1 1 1 1 1 1 4 ] 06: [ 1 1 1 1 1 1 2 3 ] 07: [ 1 1 1 1 1 1 5 ] 08: [ 1 1 1 1 1 2 2 2 ] 09: [ 1 1 1 1 1 2 4 ] 10: [ 1 1 1 1 1 3 3 ] 11: [ 1 1 1 1 1 6 ] 12: [ 1 1 1 1 2 2 3 ] 13: [ 1 1 1 1 2 5 ] 14: [ 1 1 1 1 3 4 ] 15: [ 1 1 1 2 2 2 2 ] 16: [ 1 1 1 2 2 4 ] 17: [ 1 1 1 2 3 3 ] 18: [ 1 1 1 3 5 ] 19: [ 1 1 1 4 4 ] 20: [ 1 1 2 2 2 3 ] 21: [ 1 1 2 2 5 ] 22: [ 1 1 2 3 4 ] 23: [ 1 1 3 3 3 ] 24: [ 1 2 2 2 2 2 ] 25: [ 1 2 2 2 4 ] 26: [ 1 2 2 3 3 ]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- M. Archibald, A. Blecher, S. Elizalde, and A. Knopfmacher, Subdiagonal and superdiagonal partitions, Afr. Mat. 36, 77 (2025). See p. 9.
Crossrefs
Cf. A219282 (superdiagonal compositions), A238873 (superdiagonal partitions), A238394 (strictly superdiagonal partitions), A238874 (strictly superdiagonal compositions), A025147 (strictly superdiagonal partitions into distinct parts).
Cf. A238859 (compositions of n with subdiagonal growth), A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth).
Programs
-
PARI
\\ here b: nr parts; k: max part, b+w-1: partition sum. seq(n)={my(M=matrix(n,1), v=vector(n+1)); M[1,1]=v[1]=v[2]=1; for(b=2, n, M=matrix(n-b+1,b,w,k, if(w>=k, sum(j=1, min(b-1,k), M[w+1-k,j]))); v+=concat(vector(b),vecsum(Vec(M))~)); v} \\ Andrew Howroyd, Jan 19 2024
-
PARI
N=55; VP=vector(N+1); VP[1] =VP[2] = 1; \\ one-based; memoization P(n) = VP[n+1]; for (n=2, N, VP[n+1] = sum( i=0, n-1, P(i) * P(n-1 -i) * x^((i+1)*(n-1-i)) ) ); x='x+O('x^N); A(x) = sum(n=0, N, x^n * P(n) ); Vec(A(x)) \\ Joerg Arndt, Jan 23 2024
Formula
G.f.: Sum_{n>=0} x^n * P(n) where P(n) is the row polynomial of the n-th row of A129176. This works because A129176(j,k) is also the number of subdiagonal partitions of j+k with j parts. - John Tyler Rascoe, Jan 20 2024
Comments