A238889 Number T(n,k) of self-inverse permutations p on [n] where the maximal displacement of an element equals k: k = max_{i=1..n} |p(i)-i|; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 2, 0, 1, 7, 7, 7, 4, 0, 1, 12, 16, 19, 18, 10, 0, 1, 20, 35, 47, 55, 48, 26, 0, 1, 33, 74, 117, 151, 170, 142, 76, 0, 1, 54, 153, 284, 399, 515, 544, 438, 232, 0, 1, 88, 312, 675, 1061, 1471, 1826, 1846, 1452, 764, 0, 1, 143, 629, 1575, 2792, 4119, 5651, 6664, 6494, 5008, 2620, 0
Offset: 0
Examples
T(4,0) = 1: 1234. T(4,1) = 4: 1243, 1324, 2134, 2143. T(4,2) = 3: 1432, 3214, 3412. T(4,3) = 2: 4231, 4321. Triangle T(n,k) begins: 00: 1; 01: 1, 0; 02: 1, 1, 0; 03: 1, 2, 1, 0; 04: 1, 4, 3, 2, 0; 05: 1, 7, 7, 7, 4, 0; 06: 1, 12, 16, 19, 18, 10, 0; 07: 1, 20, 35, 47, 55, 48, 26, 0; 08: 1, 33, 74, 117, 151, 170, 142, 76, 0; 09: 1, 54, 153, 284, 399, 515, 544, 438, 232, 0; 10: 1, 88, 312, 675, 1061, 1471, 1826, 1846, 1452, 764, 0; ... The 26 involutions of 5 elements together with their maximal displacements are: 01: [ 1 2 3 4 5 ] 0 02: [ 1 2 3 5 4 ] 1 03: [ 1 2 4 3 5 ] 1 04: [ 1 2 5 4 3 ] 2 05: [ 1 3 2 4 5 ] 1 06: [ 1 3 2 5 4 ] 1 07: [ 1 4 3 2 5 ] 2 08: [ 1 4 5 2 3 ] 2 09: [ 1 5 3 4 2 ] 3 10: [ 1 5 4 3 2 ] 3 11: [ 2 1 3 4 5 ] 1 12: [ 2 1 3 5 4 ] 1 13: [ 2 1 4 3 5 ] 1 14: [ 2 1 5 4 3 ] 2 15: [ 3 2 1 4 5 ] 2 16: [ 3 2 1 5 4 ] 2 17: [ 3 4 1 2 5 ] 2 18: [ 3 5 1 4 2 ] 3 19: [ 4 2 3 1 5 ] 3 20: [ 4 2 5 1 3 ] 3 21: [ 4 3 2 1 5 ] 3 22: [ 4 5 3 1 2 ] 3 23: [ 5 2 3 4 1 ] 4 24: [ 5 2 4 3 1 ] 4 25: [ 5 3 2 4 1 ] 4 26: [ 5 4 3 2 1 ] 4 There is one involution with no displacements, 7 with one displacement, etc. giving row 4: [1, 7, 7, 7, 4, 0].
Links
- Joerg Arndt and Alois P. Heinz, Rows n=0..28, flattened
Programs
-
Maple
b:= proc(n, k, s) option remember; `if`(n=0, 1, `if`(n in s, b(n-1, k, s minus {n}), b(n-1, k, s) +add(`if`(i in s, 0, b(n-1, k, s union {i})), i=max(1, n-k)..n-1))) end: A:= (n, k)-> `if`(k<0, 0, b(n, k, {})): T:= (n, k)-> A(n, k) -A(n, k-1): seq(seq(T(n, k), k=0..n), n=0..14);
-
Mathematica
b[n_, k_, s_List] := b[n, k, s] = If[n == 0, 1, If[MemberQ[s, n], b[n-1, k, DeleteCases[s, n]], b[n-1, k, s] + Sum[If[MemberQ[s, i], 0, b[n-1, k, s ~Union~ {i}]], {i, Max[1, n-k], n-1}]]]; A[n_, k_] := If[k<0, 0, b[n, k, {}]]; T[n_, k_] := A[n, k] - A[n, k-1]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 08 2015, translated from Maple *)
Comments