A238888
Number A(n,k) of self-inverse permutations p on [n] with displacement of elements restricted by k: |p(i)-i| <= k, square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 4, 5, 1, 1, 1, 2, 4, 8, 8, 1, 1, 1, 2, 4, 10, 15, 13, 1, 1, 1, 2, 4, 10, 22, 29, 21, 1, 1, 1, 2, 4, 10, 26, 48, 56, 34, 1, 1, 1, 2, 4, 10, 26, 66, 103, 108, 55, 1, 1, 1, 2, 4, 10, 26, 76, 158, 225, 208, 89, 1, 1, 1, 2, 4, 10, 26, 76, 206, 376, 492, 401, 144, 1
Offset: 0
A(4,0) = 1: 1234.
A(4,1) = 5: 1234, 1243, 1324, 2134, 2143.
A(4,2) = 8: 1234, 1243, 1324, 1432, 2134, 2143, 3214, 3412.
A(4,3) = 10: 1234, 1243, 1324, 1432, 2134, 2143, 3214, 3412, 4231, 4321.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, 2, 2, 2, ...
1, 3, 4, 4, 4, 4, 4, 4, 4, ...
1, 5, 8, 10, 10, 10, 10, 10, 10, ...
1, 8, 15, 22, 26, 26, 26, 26, 26, ...
1, 13, 29, 48, 66, 76, 76, 76, 76, ...
1, 21, 56, 103, 158, 206, 232, 232, 232, ...
1, 34, 108, 225, 376, 546, 688, 764, 764, ...
Columns k=0-10 give:
A000012,
A000045(n+1),
A000078(n+3),
A239075,
A239076,
A239077,
A239078,
A239079,
A239080,
A239081,
A239082.
-
b:= proc(n, k, s) option remember; `if`(n=0, 1, `if`(n in s,
b(n-1, k, s minus {n}), b(n-1, k, s) +add(`if`(i in s, 0,
b(n-1, k, s union {i})), i=max(1, n-k)..n-1)))
end:
A:= (n, k)-> `if`(k>n, A(n, n), b(n, k, {})):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[n_, k_, s_] := b[n, k, s] = If[n == 0, 1, If[MemberQ[s, n], b[n-1, k, DeleteCases[s, n]], b[n-1, k, s] + Sum[If[MemberQ[s, i], 0, b[n-1, k, s ~Union~ {i}]], {i, Max[1, n-k], n-1}]]]; A[n_, k_] := If[k>n, A[n, n], b[n, k, {}]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Mar 12 2014, translated from Maple *)
A238913
Number of self-inverse permutations p on [n] where the maximal displacement of an element equals 2.
Original entry on oeis.org
0, 0, 0, 1, 3, 7, 16, 35, 74, 153, 312, 629, 1257, 2495, 4926, 9684, 18972, 37064, 72243, 140547, 273007, 529626, 1026369, 1987260, 3844919, 7434542, 14368115, 27756229, 53600223, 103476920, 199715716, 385381128, 743520256, 1434272329, 2766414007, 5335290607
Offset: 0
a(3) = 1: 321.
a(4) = 3: 1432, 3214, 3412.
a(5) = 7: 12543, 14325, 14523, 21543, 32145, 32154, 34125.
a(6) = 16: 123654, 125436, 125634, 132654, 143256, 143265, 145236, 213654, 215436, 215634, 321456, 321465, 321546, 321654, 341256, 341265.
-
gf:= x^3*(1+x)/((x^2+x-1)*(x^4+x^3+x^2+x-1)):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
-
CoefficientList[Series[x^3 (x + 1)/((x^2 + x - 1) (x^4 + x^3 + x^2 + x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 09 2014 *)
A238914
Number of self-inverse permutations p on [n] where the maximal displacement of an element equals 3.
Original entry on oeis.org
0, 0, 0, 0, 2, 7, 19, 47, 117, 284, 675, 1575, 3634, 8312, 18881, 42634, 95797, 214376, 478110, 1063242, 2358703, 5221606, 11538623, 25458412, 56095424, 123458153, 271440387, 596277224, 1308849869, 2871054209, 6294182153, 13791615999, 30206220592, 66131277054
Offset: 0
a(4) = 2: 4231, 4321.
a(5) = 7: 15342, 15432, 35142, 42315, 42513, 43215, 45312.
a(6) = 19: 126453, 126543, 146253, 153426, 153624, 154326, 156423, 216453, 216543, 351426, 351624, 423156, 423165, 425136, 426153, 432156, 432165, 453126, 456123.
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-1,1,-4,-2,-3,-1,1,1,1).
-
gf:= (x^3-x-2)*x^4 / ((x+1)*(x^6-x^5+x^4-3*x^3+3*x^2-3*x+1)*
(x^4+x^3+x^2+x-1)):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
-
CoefficientList[Series[(x^3 - x - 2) x^4/((x + 1) (x^6 - x^5 + x^4 - 3 x^3 + 3 x^2 - 3 x + 1) (x^4 + x^3 + x^2 + x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 09 2014 *)
LinearRecurrence[{3,-1,-1,1,-4,-2,-3,-1,1,1,1},{0,0,0,0,2,7,19,47,117,284,675},40] (* Harvey P. Dale, Jun 12 2021 *)
A238915
Number of self-inverse permutations p on [n] where the maximal displacement of an element equals 4.
Original entry on oeis.org
0, 0, 0, 0, 0, 4, 18, 55, 151, 399, 1061, 2792, 7252, 18572, 47051, 118291, 295718, 735776, 1823183, 4501151, 11077398, 27187053, 66567357, 162655518, 396728446, 966109074, 2349342360, 5705883591, 13842565488, 33549053111, 81238182806, 196560818348
Offset: 0
a(5) = 4: 52341, 52431, 53241, 54321.
a(6) = 18: 163452, 163542, 164352, 165432, 361452, 361542, 463152, 465132, 523416, 523614, 524316, 526413, 532416, 532614, 543216, 546213, 563412, 564312.
a(7) = 55: 1274563, 1274653, 1275463, ..., 5637124, 5643127, 5674123.
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3, 0, -3, 1, 2, -7, -16, -7, -21, -12, -9, 1, 16, 7, 11, 0, 3, 2, 1, 1, -2, -1, -1).
-
gf:= (x^12 -x^9 -x^8 +2*x^7 -x^6 +3*x^5 -4*x^4 -2*x^3 +x^2 +6*x +4)*x^5 /
((x+1)*(x^6 -x^5 +x^4 -3*x^3 +3*x^2 -3*x+1) *(x^16 +x^15 +2*x^14 +x^13 +x^12 +2*x^11 +x^10 +3*x^9 -4*x^8 -5*x^7 -9*x^6 -6*x^5 -x^4 -x^3 -2*x^2 -x+1)):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
-
CoefficientList[Series[(x^12 - x^9 - x^8 + 2 x^7 - x^6 + 3 x^5 - 4 x^4 - 2 x^3 + x^2 + 6 x + 4) x^5/((x + 1) (x^6 - x^5 + x^4 - 3 x^3 + 3 x^2 - 3 x + 1) (x^16 + x^15 + 2 x^14 + x^13 + x^12 + 2 x^11 + x^10 + 3 x^9 - 4 x^8 - 5 x^7 - 9 x^6 - 6 x^5 - x^4 - x^3 - 2 x^2 - x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 09 2014 *)
LinearRecurrence[{3,0,-3,1,2,-7,-16,-7,-21,-12,-9,1,16,7,11,0,3,2,1,1,-2,-1,-1},{0,0,0,0,0,4,18,55,151,399,1061,2792,7252,18572,47051,118291,295718,735776,1823183,4501151,11077398,27187053,66567357},40] (* Harvey P. Dale, Mar 09 2023 *)
A238916
Number of self-inverse permutations p on [n] where the maximal displacement of an element equals 5.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 10, 48, 170, 515, 1471, 4119, 11605, 32568, 90756, 250432, 684816, 1858440, 5016359, 13484339, 36124302, 96487740, 257021991, 682958487, 1810749368, 4791502490, 12657090174, 33383355375, 87928909275, 231312358250, 607831534982, 1595624166626
Offset: 0
a(6) = 10: 623451, 623541, 624351, 625431, 632451, 632541, 643251, 645231, 653421, 654321.
a(7) = 48: 1734562, 1734652, 1735462, ..., 6735412, 6743512, 6754312.
a(8) = 170: 12845673, 12845763, 12846573, ..., 67583124, 67845123, 67854123.
-
gf:= (x^34 +x^33 +x^32 -x^30 +7*x^29 +4*x^28 +5*x^27 +3*x^26 -7*x^25 +2*x^24 +2*x^22 -4*x^21 -14*x^20 -38*x^19 -8*x^18 -14*x^17 -52*x^16 +12*x^15 +26*x^14 -56*x^13 -53*x^12 +79*x^11 +79*x^10 +42*x^9 +55*x^8 +49*x^7 -26*x^6 -65*x^5 -35*x^4 +13*x^3 +34*x^2 +28*x +10)*x^6 / ((x^16 +x^15 +2*x^14 +x^13 +x^12 +2*x^11 +x^10 +3*x^9 -4*x^8 -5*x^7 -9*x^6 -6*x^5 -x^4 -x^3 -2*x^2 -x +1) *(x^32 +x^31 +x^30 -x^29 -x^28 +7*x^27 +5*x^26 +x^25 -5*x^24 -3*x^23 -x^22 -8*x^21 -16*x^20 +8*x^18 -40*x^17 -36*x^16 +20*x^14 +12*x^13 +64*x^12 +52*x^11 +19*x^10 -5*x^9 -13*x^8 -27*x^7 -19*x^6 +x^5 -x^4 -x^3 -3*x^2 -x +1)):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
-
CoefficientList[Series[(x^34 + x^33 + x^32 - x^30 + 7 x^29 + 4 x^28 + 5 x^27 + 3 x^26 - 7 x^25 + 2 x^24 + 2 x^22 - 4 x^21 - 14 x^20 - 38 x^19 - 8 x^18 - 14 x^17 - 52 x^16 + 12 x^15 + 26 x^14 - 56 x^13 - 53 x^12 + 79 x^11 + 79 x^10 + 42 x^9 + 55 x^8 + 49 x^7 - 26 x^6 - 65 x^5 - 35 x^4 + 13 x^3 + 34 x^2 + 28 x + 10) x^6/((x^16 + x^15 + 2 x^14 + x^13 + x^12 + 2 x^11 + x^10 + 3 x^9 - 4 x^8 - 5 x^7 - 9 x^6 - 6 x^5 - x^4 - x^3 - 2 x^2 - x + 1) (x^32 + x^31 + x^30 - x^29 - x^28 + 7 x^27 + 5 x^26 + x^25 - 5 x^24 - 3 x^23 - x^22 - 8 x^21 - 16 x^20 + 8 x^18 - 40 x^17 - 36 x^16 + 20 x^14 + 12 x^13 + 64 x^12 + 52 x^11 + 19 x^10 - 5 x^9 - 13 x^8 - 27 x^7 - 19 x^6 + x^5 - x^4 - x^3 - 3 x^2 - x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 09 2014 *)
A238917
Number of self-inverse permutations p on [n] where the maximal displacement of an element equals 6.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 26, 142, 544, 1826, 5651, 16859, 49739, 147605, 437656, 1292876, 3795660, 11066720, 32052260, 92323188, 264835528, 757301423, 2159899295, 6146377790, 17454698660, 49473876635, 139980358007, 395414558802, 1115322187106, 3141769710776
Offset: 0
a(7) = 26: 7234561, 7234651, 7235461, 7236541, 7243561, 7243651, 7254361, 7256341, 7264531, 7265431, 7324561, 7324651, 7325461, 7326541, 7432561, 7432651, 7452361, 7462531, 7534261, 7536241, 7543261, 7564231, 7634521, 7635421, 7643521, 7654321.
a(8) = 142: 18345672, 18345762, 18346572, ..., 78563412, 78645312, 78654312.
-
gf:= -(x^79 +x^78 +2*x^77 -2*x^76 -4*x^75 -2*x^74 -2*x^73 -4*x^72 -2*x^71 -16*x^70 -10*x^69 -8*x^68 +2*x^67 +6*x^66 -2*x^65 +34*x^64 +82*x^63 +248*x^62 +114*x^61 +360*x^60 -176*x^59 +16*x^58 -613*x^57 -241*x^56 +286*x^55 +200*x^54 +812*x^53 -304*x^52 -2614*x^51 -6192*x^50 -1748*x^49 -2174*x^48 +3692*x^47 +4660*x^46 +8104*x^45 -2394*x^44 -6262*x^43 -4118*x^42 -8486*x^41 -2952*x^40 +12820*x^39 +22770*x^38 +6232*x^37
+18124*x^36 +16806*x^35 -8932*x^34 -17752*x^33 -4328*x^32 -688*x^31 -11856*x^30 +1494*x^29 +7926*x^28 -1271*x^27 -15619*x^26 -17708*x^25 -10526*x^24 -15064*x^23 -5448*x^22 +4982*x^21 +7232*x^20 +6266*x^19 +4794*x^18 +4536*x^17 -1642*x^16 -4844*x^15 -1982*x^14 +1702*x^13 +3180*x^12 +2406*x^11 +2236*x^10 +1808*x^9 +844*x^8 -232*x^7 -712*x^6 -427*x^5 -23*x^4 +132*x^3 +130*x^2 +90*x +26)*x^7 /
(-x^96 -2*x^95 -5*x^94 -2*x^93 +x^92 +4*x^91 +x^90 -6*x^89 +7*x^88 +22*x^87 +29*x^86 +33*x^85 +91*x^84 +80*x^83 +145*x^82 -10*x^81 -131*x^80 -408*x^79 -373*x^78 -190*x^77 +37*x^76 -116*x^75 -944*x^74 -1228*x^73 -3013*x^72 -912*x^71 -41*x^70 +5598*x^69 +6515*x^68 +5412*x^67 +313*x^66 -6440*x^65 -6653*x^64 +8601*x^63 +33249*x^62
+25690*x^61 +16607*x^60 -20970*x^59 -36849*x^58 -58454*x^57 -2951*x^56 +45112*x^55 +57779*x^54 +50354*x^53 -7307*x^52 -120264*x^51 -203634*x^50 -94356*x^49 -44544*x^48 -80*x^47 +29346*x^46 +69552*x^45 -7775*x^44 -30206*x^43 +20425*x^42 +98686*x^41 +199971*x^40 +199712*x^39 +213579*x^38 +115272*x^37 +13389*x^36 -79542*x^35 -80901*x^34
-67351*x^33 -61223*x^32 +3440*x^31 +91*x^30 -40746*x^29 -103061*x^28 -115084*x^27 -94543*x^26 -59162*x^25 -2547*x^24 +37784*x^23 +58688*x^22 +53020*x^21 +43683*x^20 +26240*x^19 +6089*x^18 -3934*x^17 -5143*x^16 -3776*x^15 -3661*x^14 -1868*x^13 -975*x^12 -827*x^11 -517*x^10 -330*x^9 -23*x^8 +64*x^7 -3*x^6 -10*x^5 -5*x^4 -4*x^3 +5*x^2 +2*x -1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
A238918
Number of self-inverse permutations p on [n] where the maximal displacement of an element equals 7.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 76, 438, 1846, 6664, 22322, 71223, 221747, 685899, 2133273, 6639848, 20631028, 63857132, 196698620, 602652416, 1837237916, 5577247428, 16876196404, 50936285192, 153419520771, 461274617487, 1384650408582, 4150200289940, 12421725164955
Offset: 0
a(8) = 76: 82345671, 82345761, 82346571, 82347651, ..., 87543621, 87563421, 87645321, 87654321.
A238919
Number of self-inverse permutations p on [n] where the maximal displacement of an element equals 8.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 232, 1452, 6494, 25286, 90304, 307450, 1014007, 3287295, 10616111, 34460913, 112044376, 364112828, 1180542604, 3814897196, 12278519104, 39353932208, 125637022720, 399749617604, 1268585240868, 4017417046988, 12700795616136
Offset: 0
a(9) = 232: 923456781, 923456871, 923457681, 923458761, ..., 987456321, 987465321, 987546321, 987654321.
A238920
Number of self-inverse permutations p on [n] where the maximal displacement of an element equals 9.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 764, 5008, 23980, 98846, 375950, 1353992, 4719178, 16089515, 54175927, 182019983, 614507621, 2078949960, 7035318948, 23778288812, 80187314884, 269618757792, 903570999504, 3017802963584, 10047020559840, 33357290774560
Offset: 0
A238921
Number of self-inverse permutations p on [n] where the maximal displacement of an element equals 10.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2620, 18228, 91600, 400300, 1604246, 6098862, 22340672, 79928946, 281441131, 981869555, 3421660163, 11978105085, 42029994744, 147596654412, 518045934492, 1815662189788, 6350004678048, 22151452791824, 77058178272192
Offset: 0
Showing 1-10 of 10 results.
Comments