A238889
Number T(n,k) of self-inverse permutations p on [n] where the maximal displacement of an element equals k: k = max_{i=1..n} |p(i)-i|; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 2, 0, 1, 7, 7, 7, 4, 0, 1, 12, 16, 19, 18, 10, 0, 1, 20, 35, 47, 55, 48, 26, 0, 1, 33, 74, 117, 151, 170, 142, 76, 0, 1, 54, 153, 284, 399, 515, 544, 438, 232, 0, 1, 88, 312, 675, 1061, 1471, 1826, 1846, 1452, 764, 0, 1, 143, 629, 1575, 2792, 4119, 5651, 6664, 6494, 5008, 2620, 0
Offset: 0
T(4,0) = 1: 1234.
T(4,1) = 4: 1243, 1324, 2134, 2143.
T(4,2) = 3: 1432, 3214, 3412.
T(4,3) = 2: 4231, 4321.
Triangle T(n,k) begins:
00: 1;
01: 1, 0;
02: 1, 1, 0;
03: 1, 2, 1, 0;
04: 1, 4, 3, 2, 0;
05: 1, 7, 7, 7, 4, 0;
06: 1, 12, 16, 19, 18, 10, 0;
07: 1, 20, 35, 47, 55, 48, 26, 0;
08: 1, 33, 74, 117, 151, 170, 142, 76, 0;
09: 1, 54, 153, 284, 399, 515, 544, 438, 232, 0;
10: 1, 88, 312, 675, 1061, 1471, 1826, 1846, 1452, 764, 0;
...
The 26 involutions of 5 elements together with their maximal displacements are:
01: [ 1 2 3 4 5 ] 0
02: [ 1 2 3 5 4 ] 1
03: [ 1 2 4 3 5 ] 1
04: [ 1 2 5 4 3 ] 2
05: [ 1 3 2 4 5 ] 1
06: [ 1 3 2 5 4 ] 1
07: [ 1 4 3 2 5 ] 2
08: [ 1 4 5 2 3 ] 2
09: [ 1 5 3 4 2 ] 3
10: [ 1 5 4 3 2 ] 3
11: [ 2 1 3 4 5 ] 1
12: [ 2 1 3 5 4 ] 1
13: [ 2 1 4 3 5 ] 1
14: [ 2 1 5 4 3 ] 2
15: [ 3 2 1 4 5 ] 2
16: [ 3 2 1 5 4 ] 2
17: [ 3 4 1 2 5 ] 2
18: [ 3 5 1 4 2 ] 3
19: [ 4 2 3 1 5 ] 3
20: [ 4 2 5 1 3 ] 3
21: [ 4 3 2 1 5 ] 3
22: [ 4 5 3 1 2 ] 3
23: [ 5 2 3 4 1 ] 4
24: [ 5 2 4 3 1 ] 4
25: [ 5 3 2 4 1 ] 4
26: [ 5 4 3 2 1 ] 4
There is one involution with no displacements, 7 with one displacement, etc. giving row 4: [1, 7, 7, 7, 4, 0].
-
b:= proc(n, k, s) option remember; `if`(n=0, 1, `if`(n in s,
b(n-1, k, s minus {n}), b(n-1, k, s) +add(`if`(i in s, 0,
b(n-1, k, s union {i})), i=max(1, n-k)..n-1)))
end:
A:= (n, k)-> `if`(k<0, 0, b(n, k, {})):
T:= (n, k)-> A(n, k) -A(n, k-1):
seq(seq(T(n, k), k=0..n), n=0..14);
-
b[n_, k_, s_List] := b[n, k, s] = If[n == 0, 1, If[MemberQ[s, n], b[n-1, k, DeleteCases[s, n]], b[n-1, k, s] + Sum[If[MemberQ[s, i], 0, b[n-1, k, s ~Union~ {i}]], {i, Max[1, n-k], n-1}]]]; A[n_, k_] := If[k<0, 0, b[n, k, {}]]; T[n_, k_] := A[n, k] - A[n, k-1]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 08 2015, translated from Maple *)
A239075
Number of self-inverse permutations p on [n] with displacement of elements restricted by 3: |p(i)-i| <= 3.
Original entry on oeis.org
1, 1, 2, 4, 10, 22, 48, 103, 225, 492, 1076, 2348, 5124, 11184, 24417, 53305, 116366, 254024, 554534, 1210554, 2642656, 5768943, 12593649, 27492040, 60015368, 131014088, 286004920, 624351264, 1362964321, 2975363169, 6495244138, 14179175436, 30953265426
Offset: 0
-
gf:= -(x-1)/(x^7-2*x^4-2*x+1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
-
CoefficientList[Series[(1 - x)/(x^7 - 2 x^4 - 2 x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 12 2014 *)
A239076
Number of self-inverse permutations p on [n] with displacement of elements restricted by 4: |p(i)-i| <= 4.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 66, 158, 376, 891, 2137, 5140, 12376, 29756, 71468, 171596, 412084, 989800, 2377717, 5711705, 13720054, 32955996, 79161006, 190147558, 456743814, 1097123162, 2635347280, 6330234855, 15205529809, 36524416280, 87733426944, 210739993784
Offset: 0
-
gf:= -(x+1)*(x^7 -x^6+2*x^5 -x^4 +x^3 +x-1) / (x^16 +x^15 +2*x^14 +x^13 +x^12 +2*x^11 +x^10 +3*x^9 -4*x^8 -5*x^7 -9*x^6 -6*x^5 -x^4 -x^3 -2*x^2 -x+1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
-
CoefficientList[Series[-(x + 1) (x^7 - x^6 + 2 x^5 - x^4 + x^3 + x - 1)/(x^16 + x^15 + 2 x^14 + x^13 + x^12 + 2 x^11 + x^10 + 3 x^9 - 4 x^8 - 5 x^7 - 9 x^6 - 6 x^5 - x^4 - x^3 - 2 x^2 - x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 12 2014 *)
A239077
Number of self-inverse permutations p on [n] with displacement of elements restricted by 5: |p(i)-i| <= 5.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 76, 206, 546, 1406, 3608, 9259, 23981, 62324, 162224, 422028, 1096900, 2848240, 7394076, 19196044, 49844356, 129443736, 336182997, 873106045, 2267493182, 5888625652, 15292437454, 39713590230, 103134439084, 267836774530, 695564961926
Offset: 0
-
gf:= -(x^22 +2*x^17 -10*x^12 -2*x^11 +2*x^10 -2*x^9 -2*x^8 +6*x^7 +4*x^6 -2*x^5 +2*x^4 +2*x^3 +2*x^2-1) / (x^32 +x^31 +x^30 -x^29 -x^28 +7*x^27 +5*x^26 +x^25 -5*x^24 -3*x^23 -x^22 -8*x^21 -16*x^20 +8*x^18 -40*x^17 -36*x^16 +20*x^14 +12*x^13 +64*x^12 +52*x^11 +19*x^10 -5*x^9 -13*x^8 -27*x^7 -19*x^6 +x^5 -x^4 -x^3 -3*x^2 -x+1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
-
CoefficientList[Series[-(x^22 + 2 x^17 - 10 x^12 - 2 x^11 + 2 x^10 - 2 x^9 - 2 x^8 + 6 x^7 + 4 x^6 - 2 x^5 + 2 x^4 + 2 x^3 + 2 x^2 - 1)/(x^32 + x^31 + x^30 - x^29 - x^28 + 7 x^27 + 5 x^26 + x^25 - 5 x^24 - 3 x^23 - x^22 - 8 x^21 - 16 x^20 + 8 x^18 - 40 x^17 - 36 x^16 + 20 x^14 + 12 x^13 + 64 x^12 + 52 x^11 + 19 x^10 - 5 x^9 - 13 x^8 - 27 x^7 - 19 x^6 + x^5 - x^4 - x^3 - 3 x^2 - x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 12 2014 *)
A239078
Number of self-inverse permutations p on [n] with displacement of elements restricted by 6: |p(i)-i| <= 6.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 76, 232, 688, 1950, 5434, 14910, 40840, 112063, 309829, 859684, 2389776, 6643900, 18460796, 51248304, 142167544, 394279264, 1093484420, 3033005340, 8413870972, 23343324312, 64766314089, 179693948237, 498548997886, 1383158961636
Offset: 0
-
gf:= -(x^52 +2*x^50 -2*x^49 -6*x^47 +2*x^46 -2*x^45 +8*x^44 +4*x^43 -4*x^41 -34*x^40 +4*x^39 -38*x^38 +48*x^37 +20*x^36 +90*x^35 -36*x^34 +16*x^33 -108*x^32 +2*x^31 +10*x^30 +126*x^29 +166*x^28 +16*x^27 +168*x^26 -48*x^25 -34*x^24 -134*x^23 +32*x^22 -74*x^21 -50*x^20 +90*x^19 -40*x^18 -60*x^17 -120*x^16 -44*x^15 -86*x^14 -52*x^13 +30*x^12 +24*x^11 +44*x^10 +14*x^9 +44*x^8 +24*x^7 -4*x^6 +6*x^5 +6*x^4 +2*x^3 +2*x^2-1) /
(x^64 +x^63 +3*x^62 -x^61 -x^60 -5*x^59 -5*x^58 -13*x^57 +x^56 -3*x^55 +15*x^54 +17*x^53 +15*x^52 -26*x^51 -82*x^50 -18*x^49 -14*x^48 +146*x^47 +170*x^46 +390*x^45 -102*x^44 +10*x^43 -374*x^42 -394*x^41 -178*x^40 +434*x^39 +800*x^38 +208*x^37 -284*x^36 -1024*x^35 -1016*x^34 -1080*x^33
+916*x^32 -1264*x^31 -1068*x^30 -1212*x^29 -1644*x^28 -560*x^27 -2080*x^26 -614*x^25 -350*x^24 +434*x^23 +510*x^22 +270*x^21 +230*x^20 -294*x^19 +438*x^18 +694*x^17 +806*x^16 +602*x^15 +578*x^14 +494*x^13 +111*x^12 -81*x^11 -183*x^10 -95*x^9 -119*x^8 -67*x^7 +x^6 -3*x^5 -5*x^4 -x^3 -3*x^2 -x+1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
A239079
Number of self-inverse permutations p on [n] with displacement of elements restricted by 7: |p(i)-i| <= 7.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 76, 232, 764, 2388, 7280, 21574, 63162, 183286, 531576, 1545583, 4523049, 13283748, 39091824, 115105436, 338866164, 996931680, 2930722336, 8610252768, 25290067376, 74279609504, 218185834860, 640968565724, 1883199406468, 5533359251576
Offset: 0
A239080
Number of self-inverse permutations p on [n] with displacement of elements restricted by 8: |p(i)-i| <= 8.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 8732, 28068, 88448, 273590, 839026, 2559590, 7810344, 23899859, 73552737, 227149812, 702978992, 2177474284, 6745619532, 20888771872, 64643999584, 199916632224, 617935452464, 1909553806592, 5900616453456, 18234154867712
Offset: 0
A239081
Number of self-inverse permutations p on [n] with displacement of elements restricted by 9: |p(i)-i| <= 9.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 33076, 112428, 372436, 1214976, 3913582, 12529522, 39989374, 127728664, 409169795, 1317486613, 4256424244, 13780938480, 44667060684, 144831314468, 469535390016, 1521506451968, 4927356770176, 15947637013296
Offset: 0
A239082
Number of self-inverse permutations p on [n] with displacement of elements restricted by 10: |p(i)-i| <= 10.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 130656, 464036, 1615276, 5517828, 18628384, 62330046, 207657610, 690610926, 2299356168, 7678084407, 25759043565, 86697055428, 292427968880, 987581324508, 3337168641756, 11277361448224, 38099089805120
Offset: 0
Showing 1-9 of 9 results.
Comments