cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A238888 Number A(n,k) of self-inverse permutations p on [n] with displacement of elements restricted by k: |p(i)-i| <= k, square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 4, 5, 1, 1, 1, 2, 4, 8, 8, 1, 1, 1, 2, 4, 10, 15, 13, 1, 1, 1, 2, 4, 10, 22, 29, 21, 1, 1, 1, 2, 4, 10, 26, 48, 56, 34, 1, 1, 1, 2, 4, 10, 26, 66, 103, 108, 55, 1, 1, 1, 2, 4, 10, 26, 76, 158, 225, 208, 89, 1, 1, 1, 2, 4, 10, 26, 76, 206, 376, 492, 401, 144, 1
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Mar 06 2014

Keywords

Comments

A(n,k) is exactly the number of matchings of the k-th power of the path on n vertices. Here is A(4,1): o o o o (1234); o o o--o (1243); o o--o o (1324); o--o o o (2134); o--o o--o (2143). - Pietro Codara, Feb 17 2015

Examples

			A(4,0) = 1: 1234.
A(4,1) = 5: 1234, 1243, 1324, 2134, 2143.
A(4,2) = 8: 1234, 1243, 1324, 1432, 2134, 2143, 3214, 3412.
A(4,3) = 10: 1234, 1243, 1324, 1432, 2134, 2143, 3214, 3412, 4231, 4321.
Square array A(n,k) begins:
  1,  1,   1,   1,   1,   1,   1,   1,   1, ...
  1,  1,   1,   1,   1,   1,   1,   1,   1, ...
  1,  2,   2,   2,   2,   2,   2,   2,   2, ...
  1,  3,   4,   4,   4,   4,   4,   4,   4, ...
  1,  5,   8,  10,  10,  10,  10,  10,  10, ...
  1,  8,  15,  22,  26,  26,  26,  26,  26, ...
  1, 13,  29,  48,  66,  76,  76,  76,  76, ...
  1, 21,  56, 103, 158, 206, 232, 232, 232, ...
  1, 34, 108, 225, 376, 546, 688, 764, 764, ...
		

Crossrefs

Columns k=0-10 give: A000012, A000045(n+1), A000078(n+3), A239075, A239076, A239077, A239078, A239079, A239080, A239081, A239082.
Main diagonal gives A000085.

Programs

  • Maple
    b:= proc(n, k, s) option remember; `if`(n=0, 1, `if`(n in s,
          b(n-1, k, s minus {n}), b(n-1, k, s) +add(`if`(i in s, 0,
          b(n-1, k, s union {i})), i=max(1, n-k)..n-1)))
        end:
    A:= (n, k)-> `if`(k>n, A(n, n), b(n, k, {})):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, k_, s_] := b[n, k, s] = If[n == 0, 1, If[MemberQ[s, n], b[n-1, k, DeleteCases[s, n]], b[n-1, k, s] + Sum[If[MemberQ[s, i], 0, b[n-1, k, s ~Union~ {i}]], {i, Max[1, n-k], n-1}]]]; A[n_, k_] := If[k>n, A[n, n], b[n, k, {}]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Mar 12 2014, translated from Maple *)

Formula

T(n,k) = Sum_{i=0..k} A238889(n,i).
Showing 1-1 of 1 results.