A238895 Numbers m > 1 such that a record number of numbers k have m as the sum of the proper divisors of k.
2, 3, 6, 21, 31, 49, 73, 91, 115, 121, 169, 211, 301, 331, 361, 391, 421, 511, 631, 721, 781, 841, 1051, 1261, 1471, 1561, 1681, 1891, 2101, 2311, 2521, 2731, 3151, 3361, 3571, 3991, 4201, 4411, 4621, 5251, 5461, 6091, 6511, 6721, 6931, 7771, 7981, 8191, 9031
Offset: 1
Keywords
Examples
For 2, there are no numbers. For 3, there is 1 number: 4. For 6, there are 2 numbers: 6 and 25. For 21, there are 3 numbers: 18, 51, 91. For 31, there are 5 numbers: 32, 125, 161, 209, 221. For 49, there are 6 numbers: 75, 215, 287, 407, 527, 551.
References
- Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Editions Ellipses, 2012, see p. 317 (in French).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..245 (terms 1..139 from Daniel Mondot)
Crossrefs
Programs
-
Mathematica
nn = 1000; s = Table[0, {nn}]; Do[k = DivisorSigma[1, n] - n; If[0 < k <= nn, s[[k]]++], {n, nn^2}]; t = {}; mx = -1; Do[If[s[[n]] > mx, mx = s[[n]]; AppendTo[t, {n, mx}]], {n, 2, nn}]; Transpose[t][[1]]
Comments