cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238905 The tau(sigma)-perfect numbers, where the set of f-perfect numbers for an arithmetical function f is defined in A066218.

Original entry on oeis.org

6, 15, 22, 33, 39, 57, 69, 111, 129, 141, 183, 201, 214, 219, 237, 309, 453, 471, 489, 573, 579, 633, 669, 813, 831, 849, 939, 993, 1101, 1149, 1191, 1263, 1371, 1389, 1461, 1519, 1569, 1623, 1641, 1821, 1839, 1893, 1942, 1983, 2019, 2073, 2199, 2253, 2271
Offset: 1

Views

Author

Paolo P. Lava, Mar 07 2014

Keywords

Examples

			Aliquot divisors of 39 are 1, 3, 13. Then tau(sigma(1)) + tau(sigma(3)) + tau(sigma(13)) = 1 + 3 + 4 = 8 and tau(sigma(39)) = 8.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,b,i,n;
    for n from 1 to q do a:=divisors(n); b:=0;
    for i from 1 to nops(a)-1 do b:=b+tau(sigma(a[i])); od;
    if tau(sigma(n))=b then print(n); fi; od; end: P(10^6);
  • Mathematica
    q[n_] := DivisorSum[n, DivisorSigma[0, DivisorSigma[1, #]] &, # < n &] == DivisorSigma[0, DivisorSigma[1, n]]; Select[Range[2300], q] (* Amiram Eldar, Aug 22 2023 *)
  • PARI
    isok(n) = numdiv(sigma(n)) == sumdiv(n, d, (dMichel Marcus, Mar 08 2014