A238905 The tau(sigma)-perfect numbers, where the set of f-perfect numbers for an arithmetical function f is defined in A066218.
6, 15, 22, 33, 39, 57, 69, 111, 129, 141, 183, 201, 214, 219, 237, 309, 453, 471, 489, 573, 579, 633, 669, 813, 831, 849, 939, 993, 1101, 1149, 1191, 1263, 1371, 1389, 1461, 1519, 1569, 1623, 1641, 1821, 1839, 1893, 1942, 1983, 2019, 2073, 2199, 2253, 2271
Offset: 1
Examples
Aliquot divisors of 39 are 1, 3, 13. Then tau(sigma(1)) + tau(sigma(3)) + tau(sigma(13)) = 1 + 3 + 4 = 8 and tau(sigma(39)) = 8.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Paolo P. Lava)
Programs
-
Maple
with(numtheory); P:=proc(q) local a,b,i,n; for n from 1 to q do a:=divisors(n); b:=0; for i from 1 to nops(a)-1 do b:=b+tau(sigma(a[i])); od; if tau(sigma(n))=b then print(n); fi; od; end: P(10^6);
-
Mathematica
q[n_] := DivisorSum[n, DivisorSigma[0, DivisorSigma[1, #]] &, # < n &] == DivisorSigma[0, DivisorSigma[1, n]]; Select[Range[2300], q] (* Amiram Eldar, Aug 22 2023 *)
-
PARI
isok(n) = numdiv(sigma(n)) == sumdiv(n, d, (d
Michel Marcus, Mar 08 2014