A238913 Number of self-inverse permutations p on [n] where the maximal displacement of an element equals 2.
0, 0, 0, 1, 3, 7, 16, 35, 74, 153, 312, 629, 1257, 2495, 4926, 9684, 18972, 37064, 72243, 140547, 273007, 529626, 1026369, 1987260, 3844919, 7434542, 14368115, 27756229, 53600223, 103476920, 199715716, 385381128, 743520256, 1434272329, 2766414007, 5335290607
Offset: 0
Keywords
Examples
a(3) = 1: 321. a(4) = 3: 1432, 3214, 3412. a(5) = 7: 12543, 14325, 14523, 21543, 32145, 32154, 34125. a(6) = 16: 123654, 125436, 125634, 132654, 143256, 143265, 145236, 213654, 215436, 215634, 321456, 321465, 321546, 321654, 341256, 341265.
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Column k=2 of A238889.
Programs
-
Maple
gf:= x^3*(1+x)/((x^2+x-1)*(x^4+x^3+x^2+x-1)): a:= n-> coeff(series(gf, x, n+1), x, n): seq(a(n), n=0..40);
-
Mathematica
CoefficientList[Series[x^3 (x + 1)/((x^2 + x - 1) (x^4 + x^3 + x^2 + x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 09 2014 *)
Formula
G.f.: x^3*(x+1)/((x^2+x-1)*(x^4+x^3+x^2+x-1)).