A238955 Maximal level size of arcs in divisor lattice in graded colexicographic order.
0, 1, 1, 2, 1, 3, 6, 1, 3, 4, 7, 12, 1, 3, 5, 8, 11, 18, 30, 1, 3, 5, 6, 8, 12, 15, 19, 24, 38, 60, 1, 3, 5, 7, 8, 13, 16, 19, 20, 30, 37, 46, 58, 90, 140, 1, 3, 5, 7, 8, 8, 13, 17, 20, 23, 20, 31, 36, 43, 52, 47, 66, 80, 100, 122, 185, 280
Offset: 0
Examples
Triangle T(n,k) begins: 0; 1; 1, 2; 1, 3, ; 1, 3, 4, 7, 12; 1, 3, 5, 8, 11, 18, 30; 1, 3, 5, 6, 8, 12, 15, 19, 24, 38, 60; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..2713 (rows 0..20)
- S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arxiv:1405.5283 [math.NT], 2014.
Programs
-
PARI
\\ here b(n) is A238946. b(n)={if(n==1, 0, my(v=vector(bigomega(n))); fordiv(n, d, if(d>1, v[bigomega(d)] += omega(d))); vecmax(v))} N(sig)={prod(k=1, #sig, prime(k)^sig[k])} Row(n)={apply(s->b(N(s)), [Vecrev(p) | p<-partitions(n)])} { for(n=0, 6, print(Row(n))) } \\ Andrew Howroyd, Apr 25 2020
Extensions
Offset changed and terms a(50) and beyond from Andrew Howroyd, Apr 25 2020