A238968 Maximal level size of arcs in divisor lattice in canonical order.
0, 1, 1, 2, 1, 3, 6, 1, 3, 4, 7, 12, 1, 3, 5, 8, 11, 18, 30, 1, 3, 5, 8, 6, 12, 19, 15, 24, 38, 60, 1, 3, 5, 8, 7, 13, 20, 16, 19, 30, 46, 37, 58, 90, 140, 1, 3, 5, 8, 7, 13, 20, 8, 17, 20, 31, 47, 23, 36, 43, 66, 100, 52, 80, 122, 185, 280
Offset: 0
Examples
Triangle T(n,k) begins: 0; 1; 1, 2; 1, 3, 6; 1, 3, 4, 7, 12; 1, 3, 5, 8, 11, 18, 30; 1, 3, 5, 8, 6, 12, 19, 15, 24, 38, 60; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..2713 (rows 0..20)
- S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arxiv:1405.5283 [math.NT], 2014.
Programs
-
PARI
\\ here b(n) is A238946. b(n)={if(n==1, 0, my(v=vector(bigomega(n))); fordiv(n, d, if(d>1, v[bigomega(d)] += omega(d))); vecmax(v))} N(sig)={prod(k=1, #sig, prime(k)^sig[k])} Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))} { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 28 2020
Formula
Extensions
Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 28 2020