cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A238962 Number of perfect partitions in graded colexicographic order.

Original entry on oeis.org

1, 1, 2, 3, 4, 8, 13, 8, 20, 26, 44, 75, 16, 48, 76, 132, 176, 308, 541, 32, 112, 208, 252, 368, 604, 818, 1076, 1460, 2612, 4683, 64, 256, 544, 768, 976, 1888, 2316, 3172, 3408, 5740, 7880, 10404, 14300, 25988, 47293, 128, 576, 1376, 2208, 2568, 2496, 5536, 7968
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
   1;
   1;
   2,   3;
   4,   8,  13;
   8,  20,  26,  44,  75;
  16,  48,  76, 132, 176, 308, 541;
  32, 112, 208, 252, 368, 604, 818, 1076, 1460, 2612, 4683;
  ...
		

Crossrefs

Row sums are A035341.
Cf. A002033 in graded colexicographic order.

Programs

  • PARI
    \\ here b(n) is A074206.
    N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
    b(n)={if(!n, 0, my(sig=factor(n)[,2], m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r,k)*(-1)^(r-k))))}
    Row(n)={apply(s->b(N(s)), [Vecrev(p) | p<-partitions(n)])}
    { for(n=0, 6, print(Row(n))) } \\ Andrew Howroyd, Aug 30 2020

Formula

T(n,k) = A074206(A036035(n,k)). - Andrew Howroyd, Apr 25 2020

Extensions

Offset changed and terms a(44) and beyond from Andrew Howroyd, Apr 25 2020
Showing 1-1 of 1 results.