A238978 Number of ballot sequences of length n with exactly 3 fixed points.
0, 0, 0, 1, 1, 3, 9, 28, 93, 321, 1168, 4404, 17328, 70408, 296436, 1284768, 5740804, 26332788, 124066608, 598625296, 2958281328, 14941136784, 77111251408, 406028059968, 2180584156176, 11930067296848, 66468429865344, 376770132276288, 2172036623279488
Offset: 0
Examples
a(3) = 1: [1,2,3]. a(4) = 1: [1,2,3,1]. a(5) = 3: [1,2,3,1,1], [1,2,3,1,2], [1,2,3,1,4]. a(6) = 9: [1,2,3,1,1,1], [1,2,3,1,1,2], [1,2,3,1,1,4], [1,2,3,1,2,1], [1,2,3,1,2,3], [1,2,3,1,2,4], [1,2,3,1,4,1], [1,2,3,1,4,2], [1,2,3,1,4,5].
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..800
- Wikipedia, Young tableau
Crossrefs
Column k=3 of A238802.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, n*(n-1)*(n-2)/6, ((4*n^3-54*n^2+216*n-254) *a(n-1) +(n-5)*(3*n^3-31*n^2+84*n-30) *a(n-2) -(n-5)*(n-6)*(n^2-3*n-8) *a(n-3)) / ((n-3)*(3*n^2-33*n+86))) end: seq(a(n), n=0..40);
-
Mathematica
b[n_, l_List] := b[n, l] = If[n <= 0, 1, b[n - 1, Append[l, 1]] + Sum[If[i == 1 || l[[i - 1]] > l[[i]], b[n - 1, ReplacePart[l, i -> l[[i]] + 1]], 0], {i, 1, Length[l]}]]; a[n_] := If[n == 3, 1, b[n - 4, {2, 1, 1}]]; a[n_ /; n < 3] = 0; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 0, 40}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
Formula
See Maple program.
a(n) ~ sqrt(2)/16 * exp(sqrt(n)-n/2-1/4) * n^(n/2) * (1 + 7/(24*sqrt(n))). - Vaclav Kotesovec, Mar 07 2014
Recurrence (for n>=5): (n-4)*(n^3 - 10*n^2 + 27*n - 26)*a(n) = (n^4 - 14*n^3 + 67*n^2 - 150*n + 152)*a(n-1) + (n-5)*(n-3)*(n^3 - 7*n^2 + 10*n - 8)*a(n-2). - Vaclav Kotesovec, Mar 08 2014
Comments