A239003 Number of partitions of n into distinct Fibonacci numbers that are all greater than 2.
1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 2, 0, 1, 0, 0, 3, 0, 0, 2, 0, 2, 0, 0, 3, 0, 0, 1, 0, 3, 0, 0, 3, 0, 2, 0, 0, 4, 0, 0, 2, 0, 3, 0, 0, 3, 0, 1, 0, 0, 4, 0, 0, 3, 0, 3, 0, 0, 5, 0, 0, 2, 0, 4, 0, 0, 4, 0, 2, 0, 0, 5, 0, 0, 3, 0, 3, 0, 0, 4, 0, 0
Offset: 0
Examples
There is one partition for n=0, the empty partition. All parts are distinct, which means that there are no two parts that are equal. So a(0)=1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10946
Programs
-
Maple
F:= combinat[fibonacci]: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<4, 0, b(n, i-1)+`if`(F(i)>n, 0, b(n-F(i), i-1)))) end: a:= proc(n) local j; for j from ilog[(1+sqrt(5))/2](n+1) while F(j+1)<=n do od; b(n, j) end: seq(a(n), n=0..100); # Alois P. Heinz, Mar 15 2014
-
Mathematica
f = Table[Fibonacci[n], {n, 4, 75}]; b[n_] := SeriesCoefficient[Product[1 + x^f[[k]], {k, n}], {x, 0, n}]; u = Table[b[n], {n, 0, 60}] (* A239003 *) Flatten[Position[u, 0]] (* A022342 *)
Formula
G.f.: product(1 + x^F(j), j=4..infinity). - Wolfdieter Lang, Mar 15 2014
Comments