A239096 (n^9 + 21*n^5 - 190*n^3 + 168*n)/1260.
0, 0, 0, 16, 216, 1584, 8096, 32256, 106992, 308352, 795168, 1873872, 4098952, 8422128, 16406208, 30522752, 54556128, 94140288, 157458624, 256141584, 406401336, 630447664, 958234464, 1429591680, 2096803280, 3027697920, 4309325280, 6052297680, 8395883496, 11513946096, 15621829504, 20984299776, 27924659136, 36835158272, 48188840832
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- C. P. Neuman and D. I. Schonbach, Evaluation of sums of convolved powers using Bernoulli numbers, SIAM Rev. 19 (1977), no. 1, 90--99. MR0428678 (55 #1698). See Table 3.
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Programs
-
Magma
[(n^9+21*n^5-190*n^3+168*n)/1260: n in [0..40]]; // Vincenzo Librandi, Mar 24 2014
-
Mathematica
Table[(n^9 + 21 n^5 - 190 n^3 + 168 n)/1260, {n, 0, 50}] (* Vincenzo Librandi, Mar 24 2014 *)
Formula
G.f.: 8*x^3*(2 + 7*x + 18*x^2 + 7*x^3 + 2*x^4)/(1 - x)^10. [Bruno Berselli, May 12 2014]
a(n) = (n - 2)*(n - 1)*n*(n + 1)*(n + 2)*(n^4 + 5*n^2 + 42)/1260. [Bruno Berselli, May 12 2014]