A239125 Smallest positive integer solution x of (3^3)*x - 2^n*y = 1 for n >= 0.
1, 1, 3, 3, 3, 19, 19, 19, 19, 19, 531, 531, 2579, 6675, 6675, 23059, 55827, 121363, 252435, 252435, 776723, 776723, 776723, 4971027, 4971027, 4971027, 4971027, 4971027, 139188755, 139188755, 676059667, 1749801491, 1749801491, 6044768787, 14634703379
Offset: 0
Examples
a(0) = 1 because 27*1 - 1*b(0) = 27 - 26 = 1. a(1) = 1 because 27*1 - 2*b(1) = 27 - 2*13 = 1. a(5) = 19, because 27*19 - 32*b(5) = 27*19 - 32*16 = 1.
References
- I. Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Wolfdieter Lang, On Collatz' Words, Sequences and Trees, arXiv:1404.2710 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.11.7.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,0,0,0,0,0,0,-512,1536,-1024).
Crossrefs
Cf. A007583 (comment Feb 15 2014).
Programs
-
Mathematica
LinearRecurrence[{3, -2, 0, 0, 0, 0, 0, 0, -512, 1536, -1024}, {1, 1, 3, 3, 3, 19, 19, 19, 19, 19, 531}, 40] (* Bruno Berselli, Mar 15 2014 *)
Formula
a(n) = (1 + 2^n*b(n))/27 with b(n) = 14^(n+9) (mod 27), n >= 0. The sequence b(n) has period length 18, and it is given in a comment above.
a(n) = 3*a(n-1) -2*a(n-2) -512*a(n-9) +1536*a(n-10) -1024*a(n-11) for n>10, with initial values as shown. - Bruno Berselli, Mar 15 2014
G.f.: -(512*x^10-512*x^9+32*x^6-16*x^5+4*x^3-2*x^2+2*x-1) / ((x-1)*(2*x-1)*(2*x+1)*(4*x^2-2*x+1)*(64*x^6-8*x^3+1)). - Colin Barker, Mar 20 2014
Comments