A239135 Numbers k such that (k-1)*k^2 + 1 and k^2 + (k-1) are both prime.
2, 3, 5, 6, 8, 13, 21, 24, 26, 28, 35, 45, 48, 50, 55, 76, 83, 89, 93, 96, 100, 101, 115, 120, 138, 140, 148, 149, 181, 191, 195, 203, 206, 209, 215, 230, 258, 259, 281, 285, 294, 301, 309, 323, 330, 349, 358, 373, 380, 386, 393, 395, 423, 428, 433, 474, 495
Offset: 1
Keywords
Examples
2 is in this sequence because (2-1)*2^2+1=5 and 2^2+(2-1)=5 are both prime.
Links
- Daniel Starodubtsev, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A239115.
Programs
-
Magma
k := 1; for n in [1..10000] do if IsPrime(k*(n - 1)*n^2 + 1) and IsPrime(k*n^2 + n - 1) then n; end if; end for;
-
Mathematica
Select[Range[600],PrimeQ[#^2+#-1]&&PrimeQ[#^2(#-1)+1]&] (* Farideh Firoozbakht, Mar 17 2014 *)
Comments