A239144 Number T(n,k) of self-inverse permutations p on [n] such that all transposition distances (if any) are larger than k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 10, 5, 2, 1, 1, 26, 13, 5, 2, 1, 1, 76, 37, 15, 5, 2, 1, 1, 232, 112, 47, 15, 5, 2, 1, 1, 764, 363, 155, 52, 15, 5, 2, 1, 1, 2620, 1235, 532, 188, 52, 15, 5, 2, 1, 1, 9496, 4427, 1910, 704, 203, 52, 15, 5, 2, 1, 1
Offset: 0
Examples
T(4,0) = 10: 1234, 1243, 1324, 1432, 2134, 2143, 3214, 3412, 4231, 4321. T(4,1) = 5: 1234, 1432, 3214, 3412, 4231. T(4,2) = 2: 1234, 4231. T(4,3) = 1: 1234. Triangle T(n,k) begins: 00: 1; 01: 1, 1; 02: 2, 1, 1; 03: 4, 2, 1, 1; 04: 10, 5, 2, 1, 1; 05: 26, 13, 5, 2, 1, 1; 06: 76, 37, 15, 5, 2, 1, 1; 07: 232, 112, 47, 15, 5, 2, 1, 1; 08: 764, 363, 155, 52, 15, 5, 2, 1, 1; 09: 2620, 1235, 532, 188, 52, 15, 5, 2, 1, 1; 10: 9496, 4427, 1910, 704, 203, 52, 15, 5, 2, 1, 1;
Links
- Joerg Arndt and Alois P. Heinz, Rows n = 0..30, flattened
Crossrefs
Cf. A239145.
Programs
-
Maple
b:= proc(n, k, s) option remember; `if`(n=0, 1, `if`(n in s, b(n-1, k, s minus {n}), b(n-1, k, s) +add(`if`(i in s, 0, b(n-1, k, s union {i})), i=1..n-k-1))) end: T:= (n, k)-> b(n, k, {}): seq(seq(T(n, k), k=0..n), n=0..14);
-
Mathematica
b[n_, k_, s_List] := b[n, k, s] = If[n == 0, 1, If[MemberQ[s, n], b[n-1, k, s ~Complement~ {n}], b[n-1, k, s] + Sum[If[MemberQ[s, i], 0, b[n-1, k, s ~Union~ {i}]], {i, 1, n-k-1}]]]; T[n_, k_] := b[n, k, {}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 19 2015, after Alois P. Heinz *)
Comments