A239166 Number of partitions of 7^n into parts that are at most n with at least one part of each size.
0, 1, 24, 9633, 95520600, 27656224652420, 260755601247189041231, 85962759806610904434664386174, 1041189281477724923668568740931602845066, 480588514551700434552887677121496205669535589365780, 8695551969224574889031840216144104978715552114947924501069394617
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..36
- A. V. Sills and D. Zeilberger, Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz) (arXiv:1108.4391 [math.CO])
Crossrefs
Column k=7 of A238012.
Formula
a(n) = [x^(7^n-n*(n+1)/2)] Product_{j=1..n} 1/(1-x^j).
a(n) ~ 7^(n*(n-1)) / (n!*(n-1)!). - Vaclav Kotesovec, Jun 05 2015