cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A239210 Numbers k such that k^2 is not divisible by any of its nonzero digits.

Original entry on oeis.org

7, 17, 23, 26, 47, 53, 67, 73, 76, 77, 83, 86, 94, 97, 143, 157, 163, 167, 173, 176, 187, 193, 194, 197, 223, 233, 236, 244, 253, 256, 257, 260, 274, 277, 283, 287, 293, 307, 313, 314, 457, 473, 493, 503, 517, 523, 527, 533, 547, 553, 577, 583, 587, 607, 613
Offset: 1

Views

Author

Colin Barker, Mar 12 2014

Keywords

Examples

			53 is a term because 53^2 = 2809 is not divisible by 2, 8 or 9.
		

Crossrefs

Programs

  • Mathematica
    ndnzQ[n_]:=Count[n^2/Select[IntegerDigits[n^2],#!=0&],?IntegerQ]==0; Select[Range[750],ndnzQ] (* _Harvey P. Dale, Jun 02 2015 *)
  • PARI
    isOK(n) = my(v=vecsort(digits(n^2), , 8)); for(i=1+(v[1]==0), #v, if(n^2%v[i]==0, return(0))); 1
    s=[]; for(n=1, 1000, if(isOK(n), s=concat(s, n))); s
    
  • Python
    def ok(n): return not any(n*n%int(d) == 0 for d in str(n*n) if d != '0')
    print(list(filter(ok, range(1, 614)))) # Michael S. Branicky, Jul 17 2021

A239212 Numbers n such that n^2 is divisible by each of its nonzero digits.

Original entry on oeis.org

1, 2, 3, 6, 10, 12, 18, 20, 28, 30, 32, 36, 38, 42, 48, 50, 54, 60, 96, 100, 102, 108, 110, 114, 120, 138, 150, 156, 162, 168, 180, 192, 198, 200, 204, 210, 220, 264, 280, 288, 300, 306, 318, 320, 332, 336, 338, 342, 348, 350, 360, 372, 380, 390, 402, 408
Offset: 1

Views

Author

Colin Barker, Mar 12 2014

Keywords

Examples

			198 is in the sequence because 198^2 = 39204 which is divisible by 3, 9, 2 and 4.
		

Crossrefs

Programs

  • PARI
    isOK(n) = my(v=vecsort(digits(n^2), , 8)); for(i=1+(v[1]==0), #v, if(n^2%v[i], return(0))); 1
    s=[]; for(n=1, 1000, if(isOK(n), s=concat(s, n))); s

A239213 Squares that are divisible by each of their nonzero digits.

Original entry on oeis.org

1, 4, 9, 36, 100, 144, 324, 400, 784, 900, 1024, 1296, 1444, 1764, 2304, 2500, 2916, 3600, 9216, 10000, 10404, 11664, 12100, 12996, 14400, 19044, 22500, 24336, 26244, 28224, 32400, 36864, 39204, 40000, 41616, 44100, 48400, 69696, 78400, 82944, 90000, 93636
Offset: 1

Views

Author

Colin Barker, Mar 12 2014

Keywords

Comments

Intersection of A000290 and A002796.

Examples

			39204 is in the sequence because 39204 is divisible by 3, 9, 2 and 4.
		

Crossrefs

Programs

  • Mathematica
    dnzQ[n_]:=And@@Divisible[n,Select[IntegerDigits[n],#!=0&]]; Select[ Range[ 500]^2,dnzQ] (* Harvey P. Dale, Dec 04 2014 *)
  • PARI
    isOK(n) = my(v=vecsort(digits(n^2), , 8)); for(i=1+(v[1]==0), #v, if(n^2%v[i], return(0))); 1
    s=[]; for(n=1, 1000, if(isOK(n), s=concat(s, n^2))); s
Showing 1-3 of 3 results.