cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A239210 Numbers k such that k^2 is not divisible by any of its nonzero digits.

Original entry on oeis.org

7, 17, 23, 26, 47, 53, 67, 73, 76, 77, 83, 86, 94, 97, 143, 157, 163, 167, 173, 176, 187, 193, 194, 197, 223, 233, 236, 244, 253, 256, 257, 260, 274, 277, 283, 287, 293, 307, 313, 314, 457, 473, 493, 503, 517, 523, 527, 533, 547, 553, 577, 583, 587, 607, 613
Offset: 1

Views

Author

Colin Barker, Mar 12 2014

Keywords

Examples

			53 is a term because 53^2 = 2809 is not divisible by 2, 8 or 9.
		

Crossrefs

Programs

  • Mathematica
    ndnzQ[n_]:=Count[n^2/Select[IntegerDigits[n^2],#!=0&],?IntegerQ]==0; Select[Range[750],ndnzQ] (* _Harvey P. Dale, Jun 02 2015 *)
  • PARI
    isOK(n) = my(v=vecsort(digits(n^2), , 8)); for(i=1+(v[1]==0), #v, if(n^2%v[i]==0, return(0))); 1
    s=[]; for(n=1, 1000, if(isOK(n), s=concat(s, n))); s
    
  • Python
    def ok(n): return not any(n*n%int(d) == 0 for d in str(n*n) if d != '0')
    print(list(filter(ok, range(1, 614)))) # Michael S. Branicky, Jul 17 2021

A239211 Squares that are not divisible by any of their nonzero digits.

Original entry on oeis.org

49, 289, 529, 676, 2209, 2809, 4489, 5329, 5776, 5929, 6889, 7396, 8836, 9409, 20449, 24649, 26569, 27889, 29929, 30976, 34969, 37249, 37636, 38809, 49729, 54289, 55696, 59536, 64009, 65536, 66049, 67600, 75076, 76729, 80089, 82369, 85849, 94249, 97969
Offset: 1

Views

Author

Colin Barker, Mar 12 2014

Keywords

Comments

Intersection of A000290 and A038772.
The sequence is infinite since it contains all the terms (5*10^k+3)^2, k>0. - Giovanni Resta, Mar 12 2014

Examples

			2809 is in the sequence because 2809 is not divisible by 2, 8 or 9.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[350]^2,NoneTrue[#/(IntegerDigits[#]/.(0->Nothing)), IntegerQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 08 2017 *)
  • PARI
    isOK(n) = my(v=vecsort(digits(n^2), , 8)); for(i=1+(v[1]==0), #v, if(n^2%v[i]==0, return(0))); 1
    s=[]; for(n=1, 1000, if(isOK(n), s=concat(s, n^2))); s

A239213 Squares that are divisible by each of their nonzero digits.

Original entry on oeis.org

1, 4, 9, 36, 100, 144, 324, 400, 784, 900, 1024, 1296, 1444, 1764, 2304, 2500, 2916, 3600, 9216, 10000, 10404, 11664, 12100, 12996, 14400, 19044, 22500, 24336, 26244, 28224, 32400, 36864, 39204, 40000, 41616, 44100, 48400, 69696, 78400, 82944, 90000, 93636
Offset: 1

Views

Author

Colin Barker, Mar 12 2014

Keywords

Comments

Intersection of A000290 and A002796.

Examples

			39204 is in the sequence because 39204 is divisible by 3, 9, 2 and 4.
		

Crossrefs

Programs

  • Mathematica
    dnzQ[n_]:=And@@Divisible[n,Select[IntegerDigits[n],#!=0&]]; Select[ Range[ 500]^2,dnzQ] (* Harvey P. Dale, Dec 04 2014 *)
  • PARI
    isOK(n) = my(v=vecsort(digits(n^2), , 8)); for(i=1+(v[1]==0), #v, if(n^2%v[i], return(0))); 1
    s=[]; for(n=1, 1000, if(isOK(n), s=concat(s, n^2))); s
Showing 1-3 of 3 results.