cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239223 Number T(n,k) of partitions of n with standard deviation σ in the half-open interval [k,k+1); triangle T(n,k), n>=1, 0<=k<=max(0,floor(n/2)-1), read by rows.

Original entry on oeis.org

1, 2, 3, 4, 1, 6, 1, 8, 2, 1, 10, 4, 1, 12, 7, 2, 1, 15, 10, 4, 1, 19, 14, 6, 2, 1, 23, 21, 7, 4, 1, 25, 32, 14, 3, 2, 1, 33, 39, 19, 6, 3, 1, 41, 51, 27, 10, 3, 2, 1, 44, 70, 39, 13, 7, 2, 1, 51, 92, 52, 21, 9, 3, 2, 1, 58, 121, 69, 30, 10, 6, 2, 1, 67, 149
Offset: 1

Views

Author

Alois P. Heinz, Mar 12 2014

Keywords

Examples

			Triangle T(n,k) begins:
   1;
   2;
   3;
   4,  1;
   6,  1;
   8,  2,  1;
  10,  4,  1;
  12,  7,  2, 1;
  15, 10,  4, 1;
  19, 14,  6, 2, 1;
  23, 21,  7, 4, 1;
  25, 32, 14, 3, 2, 1;
		

Crossrefs

Column k=0 gives A238616.
Row sums give A000041.
Maximal index in row n is A140106(n).
Cf. A239228.

Programs

  • Maple
    b:= proc(n, i, m, s, c) `if`(n=0, x^floor(sqrt(s/c-(m/c)^2)),
          `if`(i=1, b(0$2, m+n, s+n, c+n), add(b(n-i*j, i-1,
           m+i*j, s+i^2*j, c+j), j=0..n/i)))
        end:
    T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0$3)):
    seq(T(n), n=1..18);
  • Mathematica
    b[n_, i_, m_, s_, c_] := b[n, i, m, s, c] = If[n==0, x^Floor[Sqrt[s/c - (m/c)^2]], If[i==1, b[0, 0, m+n, s+n, c+n], Sum[b[n-i*j, i-1, m+i*j, s + i^2*j, c+j], {j, 0, n/i}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0, 0, 0]]; Table[T[n], {n, 1, 18}] // Flatten (* Jean-François Alcover, Nov 17 2015, translated from Maple *)