A239223 Number T(n,k) of partitions of n with standard deviation σ in the half-open interval [k,k+1); triangle T(n,k), n>=1, 0<=k<=max(0,floor(n/2)-1), read by rows.
1, 2, 3, 4, 1, 6, 1, 8, 2, 1, 10, 4, 1, 12, 7, 2, 1, 15, 10, 4, 1, 19, 14, 6, 2, 1, 23, 21, 7, 4, 1, 25, 32, 14, 3, 2, 1, 33, 39, 19, 6, 3, 1, 41, 51, 27, 10, 3, 2, 1, 44, 70, 39, 13, 7, 2, 1, 51, 92, 52, 21, 9, 3, 2, 1, 58, 121, 69, 30, 10, 6, 2, 1, 67, 149
Offset: 1
Examples
Triangle T(n,k) begins: 1; 2; 3; 4, 1; 6, 1; 8, 2, 1; 10, 4, 1; 12, 7, 2, 1; 15, 10, 4, 1; 19, 14, 6, 2, 1; 23, 21, 7, 4, 1; 25, 32, 14, 3, 2, 1;
Links
- Alois P. Heinz, Rows n = 1..65, flattened
- Wikipedia, Standard deviation
Crossrefs
Programs
-
Maple
b:= proc(n, i, m, s, c) `if`(n=0, x^floor(sqrt(s/c-(m/c)^2)), `if`(i=1, b(0$2, m+n, s+n, c+n), add(b(n-i*j, i-1, m+i*j, s+i^2*j, c+j), j=0..n/i))) end: T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0$3)): seq(T(n), n=1..18);
-
Mathematica
b[n_, i_, m_, s_, c_] := b[n, i, m, s, c] = If[n==0, x^Floor[Sqrt[s/c - (m/c)^2]], If[i==1, b[0, 0, m+n, s+n, c+n], Sum[b[n-i*j, i-1, m+i*j, s + i^2*j, c+j], {j, 0, n/i}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0, 0, 0]]; Table[T[n], {n, 1, 18}] // Flatten (* Jean-François Alcover, Nov 17 2015, translated from Maple *)