A239228 Number T(n,k) of partitions of n into distinct parts with standard deviation σ in the half-open interval [k,k+1); triangle T(n,k), n>=1, 0<=k<=max(0,floor(n/2)-1), read by rows.
1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 3, 1, 1, 3, 2, 2, 1, 1, 4, 3, 1, 1, 2, 4, 3, 2, 1, 2, 4, 5, 2, 1, 1, 2, 5, 6, 2, 2, 1, 1, 5, 8, 4, 2, 1, 1, 3, 5, 9, 5, 3, 1, 1, 1, 7, 9, 7, 4, 2, 1, 1, 2, 6, 12, 9, 4, 3, 1, 1, 2, 5, 15, 11, 6, 3, 2, 1, 1, 2, 6, 16
Offset: 1
Examples
Triangle T(n,k) begins: 1; 1; 2; 1, 1; 2, 1; 2, 1, 1; 2, 2, 1; 1, 3, 1, 1; 3, 2, 2, 1; 1, 4, 3, 1, 1; 2, 4, 3, 2, 1; 2, 4, 5, 2, 1, 1;
Links
- Alois P. Heinz, Rows n = 1..100, flattened
- Wikipedia, Standard deviation
Crossrefs
Programs
-
Maple
b:= proc(n, i, m, s, c) `if`(n>i*(i+1)/2, 0, `if`(n=0, x^floor(sqrt(s/c-(m/c)^2)), b(n, i-1, m, s, c)+ `if`(i>n, 0, b(n-i, i-1, m+i, s+i^2, c+1)))) end: T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0$3)): seq(T(n), n=1..20);
-
Mathematica
b[n_, i_, m_, s_, c_] := If[n > i*(i + 1)/2, 0, If[n == 0, x^Floor[Sqrt[ s/c - (m/c)^2]], b[n, i - 1, m, s, c] + If[i > n, 0, b[n - i, i - 1, m + i, s + i^2, c + 1]]]]; T[n_] := Table[Coefficient[#, x, i], {i, 0, Exponent[#, x]}]&[b[n, n, 0, 0, 0]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, May 22 2018, translated from Maple *)