cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239228 Number T(n,k) of partitions of n into distinct parts with standard deviation σ in the half-open interval [k,k+1); triangle T(n,k), n>=1, 0<=k<=max(0,floor(n/2)-1), read by rows.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 3, 1, 1, 3, 2, 2, 1, 1, 4, 3, 1, 1, 2, 4, 3, 2, 1, 2, 4, 5, 2, 1, 1, 2, 5, 6, 2, 2, 1, 1, 5, 8, 4, 2, 1, 1, 3, 5, 9, 5, 3, 1, 1, 1, 7, 9, 7, 4, 2, 1, 1, 2, 6, 12, 9, 4, 3, 1, 1, 2, 5, 15, 11, 6, 3, 2, 1, 1, 2, 6, 16
Offset: 1

Views

Author

Alois P. Heinz, Mar 12 2014

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1;
  2;
  1, 1;
  2, 1;
  2, 1, 1;
  2, 2, 1;
  1, 3, 1, 1;
  3, 2, 2, 1;
  1, 4, 3, 1, 1;
  2, 4, 3, 2, 1;
  2, 4, 5, 2, 1, 1;
		

Crossrefs

Column k=0 gives A239140.
Row sums give A000009.
Maximal index in row n is A140106(n).
Cf. A239223.

Programs

  • Maple
    b:= proc(n, i, m, s, c) `if`(n>i*(i+1)/2, 0, `if`(n=0,
          x^floor(sqrt(s/c-(m/c)^2)), b(n, i-1, m, s, c)+
          `if`(i>n, 0, b(n-i, i-1, m+i, s+i^2, c+1))))
        end:
    T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0$3)):
    seq(T(n), n=1..20);
  • Mathematica
    b[n_, i_, m_, s_, c_] := If[n > i*(i + 1)/2, 0, If[n == 0, x^Floor[Sqrt[ s/c - (m/c)^2]], b[n, i - 1, m, s, c] + If[i > n, 0, b[n - i, i - 1, m + i, s + i^2, c + 1]]]];
    T[n_] := Table[Coefficient[#, x, i], {i, 0, Exponent[#, x]}]&[b[n, n, 0, 0, 0]];
    Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, May 22 2018, translated from Maple *)