cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A239140 Number of strict partitions of n having standard deviation σ < 1.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Mar 11 2014

Keywords

Comments

Regarding standard deviation, see Comments at A238616.

Examples

			The standard deviations of the strict partitions of 9 are 0., 3.5, 2.5, 1.5, 2.16025, 0.5, 1.63299, 0.816497, so that a(9) = 3.
		

Crossrefs

Programs

  • Mathematica
    z = 30; g[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, Length[t]}]/Length[t]]
    Table[Count[g[n], p_ /; s[p] < 1], {n, z}]   (* A239140 *)
    Table[Count[g[n], p_ /; s[p] <= 1], {n, z}]  (* A239141 *)
    Table[Count[g[n], p_ /; s[p] == 1], {n, z}]  (* periodic 01 *)
    Table[Count[g[n], p_ /; s[p] > 1], {n, z}]   (* A239142 *)
    Table[Count[g[n], p_ /; s[p] >= 1], {n, z}]  (* A239143 *)
    t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsQ[n]}]]
    ListPlot[Sort[t[30]]] (*plot of st.dev's of strict partitions of 30*)
    (* Peter J. C. Moses, Mar 03 2014 *)
    Join[{1, 1, 2},LinearRecurrence[{-1, 0, 1, 1},{1, 2, 2, 2},83]] (* Ray Chandler, Aug 25 2015 *)
  • PARI
    A083039(n) = (1+!(n%2)+!(n%3));
    A239140(n) = if(n<=3,1+(3==n),A083039(n-3)); \\ Antti Karttunen, May 24 2021

Formula

a(n + 3) = A083039(n) for n >= 1 (periodic with period 6); a(n) + A239143(n) = A000009(n) for n >=1.
G.f.: -(x^6+x^5+x^4+2*x^3+3*x^2+2*x+1)*x / ((x-1)*(x+1)*(x^2+x+1)). - Alois P. Heinz, Mar 14 2014

Extensions

A-number in the first formula corrected by Antti Karttunen, May 24 2021

A239223 Number T(n,k) of partitions of n with standard deviation σ in the half-open interval [k,k+1); triangle T(n,k), n>=1, 0<=k<=max(0,floor(n/2)-1), read by rows.

Original entry on oeis.org

1, 2, 3, 4, 1, 6, 1, 8, 2, 1, 10, 4, 1, 12, 7, 2, 1, 15, 10, 4, 1, 19, 14, 6, 2, 1, 23, 21, 7, 4, 1, 25, 32, 14, 3, 2, 1, 33, 39, 19, 6, 3, 1, 41, 51, 27, 10, 3, 2, 1, 44, 70, 39, 13, 7, 2, 1, 51, 92, 52, 21, 9, 3, 2, 1, 58, 121, 69, 30, 10, 6, 2, 1, 67, 149
Offset: 1

Views

Author

Alois P. Heinz, Mar 12 2014

Keywords

Examples

			Triangle T(n,k) begins:
   1;
   2;
   3;
   4,  1;
   6,  1;
   8,  2,  1;
  10,  4,  1;
  12,  7,  2, 1;
  15, 10,  4, 1;
  19, 14,  6, 2, 1;
  23, 21,  7, 4, 1;
  25, 32, 14, 3, 2, 1;
		

Crossrefs

Column k=0 gives A238616.
Row sums give A000041.
Maximal index in row n is A140106(n).
Cf. A239228.

Programs

  • Maple
    b:= proc(n, i, m, s, c) `if`(n=0, x^floor(sqrt(s/c-(m/c)^2)),
          `if`(i=1, b(0$2, m+n, s+n, c+n), add(b(n-i*j, i-1,
           m+i*j, s+i^2*j, c+j), j=0..n/i)))
        end:
    T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0$3)):
    seq(T(n), n=1..18);
  • Mathematica
    b[n_, i_, m_, s_, c_] := b[n, i, m, s, c] = If[n==0, x^Floor[Sqrt[s/c - (m/c)^2]], If[i==1, b[0, 0, m+n, s+n, c+n], Sum[b[n-i*j, i-1, m+i*j, s + i^2*j, c+j], {j, 0, n/i}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0, 0, 0]]; Table[T[n], {n, 1, 18}] // Flatten (* Jean-François Alcover, Nov 17 2015, translated from Maple *)
Showing 1-2 of 2 results.