A239239 Number of strict partitions of n having fewer odd parts than even.
0, 0, 1, 0, 1, 0, 2, 1, 2, 2, 3, 4, 4, 7, 5, 11, 7, 16, 10, 23, 15, 32, 21, 43, 32, 57, 45, 74, 66, 96, 92, 123, 129, 157, 175, 199, 239, 253, 316, 320, 419, 406, 544, 514, 704, 652, 898, 825, 1142, 1045, 1435, 1321, 1798, 1669, 2234, 2103, 2766, 2646, 3404
Offset: 0
Examples
a(6) counts these partitions: 6, 42.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, `if`(t<0, 1, 0 ), b(n, i-1, t)+`if`(i>n, 0, b(n-i, i-1, t+`if`(irem(i, 2)=1, 1, -1))))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..60); # Alois P. Heinz, Mar 15 2014
-
Mathematica
z = 55; p[n_] := p[n] = IntegerPartitions[n]; d[u_] := d[u] = DeleteDuplicates[u]; g[u_] := g[u] = Length[u]; Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] < Count[#, ?EvenQ] &]], {n, 0, z}] (* A239239 *) Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] <= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239240 *) Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] == Count[#, ?EvenQ] &]], {n, 0, z}] (* A239241 *) Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] > Count[#, ?EvenQ] &]], {n, 0, z}] (* A239242 *) Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] >= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239243 *) (* Peter J. C. Moses, Mar 10 2014 *) b[n_, i_, t_] := b[n, i, t] = If[n>i*(i+1)/2, 0, If[n == 0, If[t<0, 1, 0], b[n, i-1, t] + If[i>n, 0, b[n-i, i-1, t+If[Mod[i, 2] == 1, 1, -1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
Comments