A239241
Number of partitions of n into distinct parts for which (number of odd parts) = (number of even parts).
Original entry on oeis.org
1, 0, 0, 1, 0, 2, 0, 3, 0, 4, 1, 5, 2, 6, 5, 7, 8, 8, 14, 9, 20, 11, 30, 13, 40, 17, 55, 23, 70, 32, 91, 45, 112, 65, 140, 91, 169, 128, 206, 177, 245, 241, 295, 323, 350, 429, 419, 559, 499, 722, 600, 921, 721, 1162, 874, 1452, 1062, 1800, 1299, 2210
Offset: 0
a(9) = 4 counts these partitions: 81, 72, 63, 54.
-
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, `if`(t=0, 1, 0 ), b(n, i-1, t)+`if`(i>n, 0,
b(n-i, i-1, t+`if`(irem(i, 2)=1, 1, -1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 15 2014
-
z = 55; p[n_] := p[n] = IntegerPartitions[n]; d[u_] := d[u] = DeleteDuplicates[u]; g[u_] := g[u] = Length[u];
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] < Count[#, ?EvenQ] &]], {n, 0, z}] (* A239239 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] <= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239240 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] == Count[#, ?EvenQ] &]], {n, 0, z}] (* A239241 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] > Count[#, ?EvenQ] &]], {n, 0, z}] (* A239242 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] >= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239243 *)
(* Peter J. C. Moses, Mar 10 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[n > i*(i+1)/2, 0, If[n==0, If[t==0, 1, 0], b[n, i-1, t] + If[i>n, 0, b[n-i, i-1, t + If[Mod[i, 2]==1, 1, -1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 27 2015, after Alois P. Heinz *)
A240021
Number T(n,k) of partitions of n into distinct parts, where k is the difference between the number of odd parts and the number of even parts; triangle T(n,k), n>=0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 1, 1, 1, 0, 1, 1, 1, 3, 1, 1, 1, 0, 2, 2, 2, 4, 1, 0, 1, 2, 1, 1, 4, 2, 4, 5, 1, 1, 1, 1, 2, 1, 2, 6, 3, 1, 6, 6, 1, 2, 2, 1, 3, 1, 5, 9, 3, 2, 9, 7, 2, 4, 3, 2, 3, 2, 8, 12, 4, 0, 1, 4, 12, 8, 3, 7, 4, 3, 4, 3, 14, 16, 4, 1, 1, 7, 16, 9, 6, 11, 5, 1, 4, 4, 6, 20, 20, 5, 2, 2
Offset: 0
T(12,-3) = 1: [6,4,2].
T(12,-2) = 2: [10,2], [8,4].
T(12,-1) = 1: [12].
T(12,0) = 2: [6,3,2,1], [5,4,2,1].
T(12,1) = 6: [9,2,1], [8,3,1], [7,4,1], [7,3,2], [6,5,1], [5,4,3].
T(12,2) = 3: [11,1], [9,3], [7,5].
T(13,-1) = 6: [10,2,1], [8,4,1], [8,3,2], [7,4,2], [6,5,2], [6,4,3].
T(14,-2) = 3: [12,2], [10,4], [8,6].
Triangle T(n,k) begins:
: n\k : -3 -2 -1 0 1 2 3 ...
+-----+--------------------------
: 0 : 1
: 1 : 1
: 2 : 1
: 3 : 1, 1
: 4 : 1, 0, 0, 1
: 5 : 2, 1
: 6 : 1, 1, 0, 1, 1
: 7 : 1, 3, 1
: 8 : 1, 1, 0, 2, 2
: 9 : 2, 4, 1, 0, 1
: 10 : 2, 1, 1, 4, 2
: 11 : 4, 5, 1, 1, 1
: 12 : 1, 2, 1, 2, 6, 3
: 13 : 1, 6, 6, 1, 2, 2
: 14 : 1, 3, 1, 5, 9, 3
Columns k=0-10 give:
A239241,
A239871(n+1),
A240138,
A240139,
A240140,
A240141,
A240142,
A240143,
A240144,
A240145,
A240146.
-
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, 1,
expand(b(n, i-1)+`if`(i>n, 0, b(n-i, i-1)*x^(2*irem(i, 2)-1)))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b(n$2)):
seq(T(n), n=0..20);
-
b[n_, i_] := b[n, i] = If[n>i*(i+1)/2, 0, If[n == 0, 1, Expand[b[n, i-1] + If[i>n, 0, b[n-i, i-1]*x^(2*Mod[i, 2]-1)]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, i], {i, Exponent[p, x, Min], Exponent[p, x]}]][b[n, n]]; Table[ T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)
-
N=20; q='q+O('q^N);
e(n) = if(n%2!=0, u, 1/u);
gf = prod(n=1,N, 1 + e(n)*q^n );
V = Vec( gf );
{ for (j=1, #V, \\ print triangle, including leading zeros
for (i=0, N-j, print1(" ")); \\ padding
for (i=-j+1, j-1, print1(polcoeff(V[j], i, u),", "));
print();
); }
/* Joerg Arndt, Apr 01 2014 */
A239240
Number of partitions of n into distinct parts for which (number of odd parts) <= (number of even parts).
Original entry on oeis.org
1, 0, 1, 1, 1, 2, 2, 4, 2, 6, 4, 9, 6, 13, 10, 18, 15, 24, 24, 32, 35, 43, 51, 56, 72, 74, 100, 97, 136, 128, 183, 168, 241, 222, 315, 290, 408, 381, 522, 497, 664, 647, 839, 837, 1054, 1081, 1317, 1384, 1641, 1767, 2035, 2242, 2519, 2831, 3108, 3555, 3828
Offset: 0
a(7) = 4 counts these partitions: 61, 52, 43, 421.
-
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, `if`(t<=0, 1, 0 ), b(n, i-1, t)+`if`(i>n, 0,
b(n-i, i-1, t+`if`(irem(i, 2)=1, 1, -1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 15 2014
-
z = 55; p[n_] := p[n] = IntegerPartitions[n]; d[u_] := d[u] = DeleteDuplicates[u]; g[u_] := g[u] = Length[u];
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] < Count[#, ?EvenQ] &]], {n, 0, z}] (* A239239 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] <= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239240 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] == Count[#, ?EvenQ] &]], {n, 0, z}] (* A239241 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] > Count[#, ?EvenQ] &]], {n, 0, z}] (* A239242 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] >= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239243 *)
(* Peter J. C. Moses, Mar 10 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[n>i*(i+1)/2, 0, If[n==0, If[t <= 0, 1, 0], b[n, i-1, t] + If[i>n, 0, b[n-i, i-1, t+If[Mod[i, 2]==1, 1, -1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)
A239243
Number of partitions of n into distinct parts for which (number of odd parts) >= (number of even parts).
Original entry on oeis.org
1, 1, 0, 2, 1, 3, 2, 4, 4, 6, 7, 8, 11, 11, 17, 16, 25, 22, 36, 31, 49, 44, 68, 61, 90, 85, 120, 118, 156, 160, 204, 217, 261, 291, 337, 386, 429, 507, 548, 662, 694, 854, 882, 1096, 1112, 1396, 1406, 1765, 1768, 2219, 2223, 2776, 2784, 3451, 3484, 4275
Offset: 0
a(8) = 4 counts these partitions: 71, 53, 521, 431.
-
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, `if`(t>=0, 1, 0 ), b(n, i-1, t)+`if`(i>n, 0,
b(n-i, i-1, t+`if`(irem(i, 2)=1, 1, -1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 15 2014
-
z = 55; p[n_] := p[n] = IntegerPartitions[n]; d[u_] := d[u] = DeleteDuplicates[u]; g[u_] := g[u] = Length[u];
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] < Count[#, ?EvenQ] &]], {n, 0, z}] (* A239239 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] <= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239240 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] == Count[#, ?EvenQ] &]], {n, 0, z}] (* A239241 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] > Count[#, ?EvenQ] &]], {n, 0, z}] (* A239242 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] >= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239243 *)
(* Peter J. C. Moses, Mar 10 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[n>i*(i+1)/2, 0, If[n==0, If[t>=0, 1, 0], b[n, i-1, t]+If[i>n, 0, b[n-i, i-1, t+If[Mod[i, 2]==1, 1, -1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)
A239242
Number of partitions of n into distinct parts for which (number of odd parts) > (number of even parts).
Original entry on oeis.org
0, 1, 0, 1, 1, 1, 2, 1, 4, 2, 6, 3, 9, 5, 12, 9, 17, 14, 22, 22, 29, 33, 38, 48, 50, 68, 65, 95, 86, 128, 113, 172, 149, 226, 197, 295, 260, 379, 342, 485, 449, 613, 587, 773, 762, 967, 987, 1206, 1269, 1497, 1623, 1855, 2063, 2289, 2610, 2823, 3280, 3471
Offset: 0
a(8) = 4 counts these partitions: 71, 53, 521, 431.
-
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, `if`(t>0, 1, 0 ), b(n, i-1, t)+`if`(i>n, 0,
b(n-i, i-1, t+`if`(irem(i, 2)=1, 1, -1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 15 2014
-
z = 55; p[n_] := p[n] = IntegerPartitions[n]; d[u_] := d[u] = DeleteDuplicates[u]; g[u_] := g[u] = Length[u];
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] < Count[#, ?EvenQ] &]], {n, 0, z}] (* A239239 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] <= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239240 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] == Count[#, ?EvenQ] &]], {n, 0, z}] (* A239241 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] > Count[#, ?EvenQ] &]], {n, 0, z}] (* A239242 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] >= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239243 *)
(* Peter J. C. Moses, Mar 10 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[n>i*(i+1)/2, 0, If[n==0, If[t>0, 1, 0], b[n, i-1, t]+If[i>n, 0, b[n-i, i-1, t+If[Mod[i, 2]==1, 1, -1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)
Showing 1-5 of 5 results.
Comments