A239241
Number of partitions of n into distinct parts for which (number of odd parts) = (number of even parts).
Original entry on oeis.org
1, 0, 0, 1, 0, 2, 0, 3, 0, 4, 1, 5, 2, 6, 5, 7, 8, 8, 14, 9, 20, 11, 30, 13, 40, 17, 55, 23, 70, 32, 91, 45, 112, 65, 140, 91, 169, 128, 206, 177, 245, 241, 295, 323, 350, 429, 419, 559, 499, 722, 600, 921, 721, 1162, 874, 1452, 1062, 1800, 1299, 2210
Offset: 0
a(9) = 4 counts these partitions: 81, 72, 63, 54.
-
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, `if`(t=0, 1, 0 ), b(n, i-1, t)+`if`(i>n, 0,
b(n-i, i-1, t+`if`(irem(i, 2)=1, 1, -1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 15 2014
-
z = 55; p[n_] := p[n] = IntegerPartitions[n]; d[u_] := d[u] = DeleteDuplicates[u]; g[u_] := g[u] = Length[u];
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] < Count[#, ?EvenQ] &]], {n, 0, z}] (* A239239 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] <= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239240 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] == Count[#, ?EvenQ] &]], {n, 0, z}] (* A239241 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] > Count[#, ?EvenQ] &]], {n, 0, z}] (* A239242 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] >= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239243 *)
(* Peter J. C. Moses, Mar 10 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[n > i*(i+1)/2, 0, If[n==0, If[t==0, 1, 0], b[n, i-1, t] + If[i>n, 0, b[n-i, i-1, t + If[Mod[i, 2]==1, 1, -1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 27 2015, after Alois P. Heinz *)
A240021
Number T(n,k) of partitions of n into distinct parts, where k is the difference between the number of odd parts and the number of even parts; triangle T(n,k), n>=0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 1, 1, 1, 0, 1, 1, 1, 3, 1, 1, 1, 0, 2, 2, 2, 4, 1, 0, 1, 2, 1, 1, 4, 2, 4, 5, 1, 1, 1, 1, 2, 1, 2, 6, 3, 1, 6, 6, 1, 2, 2, 1, 3, 1, 5, 9, 3, 2, 9, 7, 2, 4, 3, 2, 3, 2, 8, 12, 4, 0, 1, 4, 12, 8, 3, 7, 4, 3, 4, 3, 14, 16, 4, 1, 1, 7, 16, 9, 6, 11, 5, 1, 4, 4, 6, 20, 20, 5, 2, 2
Offset: 0
T(12,-3) = 1: [6,4,2].
T(12,-2) = 2: [10,2], [8,4].
T(12,-1) = 1: [12].
T(12,0) = 2: [6,3,2,1], [5,4,2,1].
T(12,1) = 6: [9,2,1], [8,3,1], [7,4,1], [7,3,2], [6,5,1], [5,4,3].
T(12,2) = 3: [11,1], [9,3], [7,5].
T(13,-1) = 6: [10,2,1], [8,4,1], [8,3,2], [7,4,2], [6,5,2], [6,4,3].
T(14,-2) = 3: [12,2], [10,4], [8,6].
Triangle T(n,k) begins:
: n\k : -3 -2 -1 0 1 2 3 ...
+-----+--------------------------
: 0 : 1
: 1 : 1
: 2 : 1
: 3 : 1, 1
: 4 : 1, 0, 0, 1
: 5 : 2, 1
: 6 : 1, 1, 0, 1, 1
: 7 : 1, 3, 1
: 8 : 1, 1, 0, 2, 2
: 9 : 2, 4, 1, 0, 1
: 10 : 2, 1, 1, 4, 2
: 11 : 4, 5, 1, 1, 1
: 12 : 1, 2, 1, 2, 6, 3
: 13 : 1, 6, 6, 1, 2, 2
: 14 : 1, 3, 1, 5, 9, 3
Columns k=0-10 give:
A239241,
A239871(n+1),
A240138,
A240139,
A240140,
A240141,
A240142,
A240143,
A240144,
A240145,
A240146.
-
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, 1,
expand(b(n, i-1)+`if`(i>n, 0, b(n-i, i-1)*x^(2*irem(i, 2)-1)))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b(n$2)):
seq(T(n), n=0..20);
-
b[n_, i_] := b[n, i] = If[n>i*(i+1)/2, 0, If[n == 0, 1, Expand[b[n, i-1] + If[i>n, 0, b[n-i, i-1]*x^(2*Mod[i, 2]-1)]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, i], {i, Exponent[p, x, Min], Exponent[p, x]}]][b[n, n]]; Table[ T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)
-
N=20; q='q+O('q^N);
e(n) = if(n%2!=0, u, 1/u);
gf = prod(n=1,N, 1 + e(n)*q^n );
V = Vec( gf );
{ for (j=1, #V, \\ print triangle, including leading zeros
for (i=0, N-j, print1(" ")); \\ padding
for (i=-j+1, j-1, print1(polcoeff(V[j], i, u),", "));
print();
); }
/* Joerg Arndt, Apr 01 2014 */
A352129
Number of strict integer partitions of n with as many even conjugate parts as odd conjugate parts.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 3, 5, 5, 6, 6, 9, 8, 10, 12, 13, 15, 17, 20, 20, 26, 26, 32, 35, 39, 44, 50, 55, 61, 71, 76, 87, 96, 108, 117, 135, 145, 164, 181, 200, 222, 246, 272, 298, 334, 363, 404, 443
Offset: 0
The a(n) strict partitions for selected n:
n = 3 13 15 18 20 22
------------------------------------------------------------------
(2,1) (6,5,2) (10,5) (12,6) (12,7,1) (12,8,2)
(6,4,2,1) (6,4,3,2) (8,7,3) (8,5,4,3) (8,6,5,3)
(6,5,3,1) (8,5,3,2) (8,6,4,2) (8,7,5,2)
(8,6,3,1) (8,7,4,1) (12,7,2,1)
(8,6,3,2,1) (8,6,4,3,1)
(8,7,4,2,1)
A130780 counts partitions with no more even than odd parts, strict
A239243.
A171966 counts partitions with no more odd than even parts, strict
A239240.
There are four statistics:
There are four other pairings of statistics:
There are three double-pairings of statistics:
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[conj[#],?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]
A239243
Number of partitions of n into distinct parts for which (number of odd parts) >= (number of even parts).
Original entry on oeis.org
1, 1, 0, 2, 1, 3, 2, 4, 4, 6, 7, 8, 11, 11, 17, 16, 25, 22, 36, 31, 49, 44, 68, 61, 90, 85, 120, 118, 156, 160, 204, 217, 261, 291, 337, 386, 429, 507, 548, 662, 694, 854, 882, 1096, 1112, 1396, 1406, 1765, 1768, 2219, 2223, 2776, 2784, 3451, 3484, 4275
Offset: 0
a(8) = 4 counts these partitions: 71, 53, 521, 431.
-
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, `if`(t>=0, 1, 0 ), b(n, i-1, t)+`if`(i>n, 0,
b(n-i, i-1, t+`if`(irem(i, 2)=1, 1, -1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 15 2014
-
z = 55; p[n_] := p[n] = IntegerPartitions[n]; d[u_] := d[u] = DeleteDuplicates[u]; g[u_] := g[u] = Length[u];
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] < Count[#, ?EvenQ] &]], {n, 0, z}] (* A239239 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] <= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239240 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] == Count[#, ?EvenQ] &]], {n, 0, z}] (* A239241 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] > Count[#, ?EvenQ] &]], {n, 0, z}] (* A239242 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] >= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239243 *)
(* Peter J. C. Moses, Mar 10 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[n>i*(i+1)/2, 0, If[n==0, If[t>=0, 1, 0], b[n, i-1, t]+If[i>n, 0, b[n-i, i-1, t+If[Mod[i, 2]==1, 1, -1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)
A352130
Number of strict integer partitions of n with as many odd parts as even conjugate parts.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7, 7, 8, 9, 11, 12, 13, 14, 16, 18, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 65, 72, 79, 86, 93, 102, 111, 121, 132, 143, 155, 169, 183, 197, 213, 231, 251, 271, 292, 315, 340, 367, 396
Offset: 0
The a(n) strict partitions for selected n:
n = 2 7 9 13 14 15 16
--------------------------------------------------------------------
(2) (6,1) (8,1) (12,1) (14) (14,1) (16)
(4,2,1) (4,3,2) (6,4,3) (6,5,3) (6,5,4) (8,5,3)
(6,2,1) (8,3,2) (10,3,1) (8,4,3) (12,3,1)
(10,2,1) (6,4,3,1) (10,3,2) (6,5,4,1)
(8,3,2,1) (12,2,1) (8,4,3,1)
(6,5,3,1) (10,3,2,1)
(6,4,3,2,1)
A130780 counts partitions with no more even than odd parts, strict
A239243.
A171966 counts partitions with no more odd than even parts, strict
A239240.
There are four statistics:
There are four other pairings of statistics:
There are three double-pairings of statistics:
Cf.
A027187,
A027193,
A103919,
A122111,
A236559,
A325039,
A344607,
A344651,
A345196,
A350950,
A350951.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]
A239242
Number of partitions of n into distinct parts for which (number of odd parts) > (number of even parts).
Original entry on oeis.org
0, 1, 0, 1, 1, 1, 2, 1, 4, 2, 6, 3, 9, 5, 12, 9, 17, 14, 22, 22, 29, 33, 38, 48, 50, 68, 65, 95, 86, 128, 113, 172, 149, 226, 197, 295, 260, 379, 342, 485, 449, 613, 587, 773, 762, 967, 987, 1206, 1269, 1497, 1623, 1855, 2063, 2289, 2610, 2823, 3280, 3471
Offset: 0
a(8) = 4 counts these partitions: 71, 53, 521, 431.
-
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, `if`(t>0, 1, 0 ), b(n, i-1, t)+`if`(i>n, 0,
b(n-i, i-1, t+`if`(irem(i, 2)=1, 1, -1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 15 2014
-
z = 55; p[n_] := p[n] = IntegerPartitions[n]; d[u_] := d[u] = DeleteDuplicates[u]; g[u_] := g[u] = Length[u];
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] < Count[#, ?EvenQ] &]], {n, 0, z}] (* A239239 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] <= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239240 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] == Count[#, ?EvenQ] &]], {n, 0, z}] (* A239241 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] > Count[#, ?EvenQ] &]], {n, 0, z}] (* A239242 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] >= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239243 *)
(* Peter J. C. Moses, Mar 10 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[n>i*(i+1)/2, 0, If[n==0, If[t>0, 1, 0], b[n, i-1, t]+If[i>n, 0, b[n-i, i-1, t+If[Mod[i, 2]==1, 1, -1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)
A352131
Number of strict integer partitions of n with same number of even parts as odd conjugate parts.
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 2, 3, 2, 2, 3, 4, 3, 4, 5, 5, 5, 6, 7, 7, 8, 10, 10, 10, 12, 14, 15, 14, 17, 21, 20, 20, 25, 28, 28, 29, 34, 39, 39, 40, 47, 52, 53, 56, 64, 70, 71, 77, 86, 92, 97, 104, 114, 122
Offset: 0
The a(n) strict partitions for selected n:
n = 3 10 14 18 21 24
----------------------------------------------------------------------
(2,1) (6,4) (8,6) (10,8) (11,10) (8,7,5,4)
(4,3,2,1) (5,4,3,2) (6,5,4,3) (8,6,4,3) (9,8,4,3)
(6,5,2,1) (7,6,3,2) (8,7,4,2) (10,8,4,2)
(8,7,2,1) (10,8,2,1) (10,9,3,2)
(6,5,4,3,2,1) (11,10,2,1)
(8,6,4,3,2,1)
A130780 counts partitions with no more even than odd parts, strict
A239243.
A171966 counts partitions with no more odd than even parts, strict
A239240.
There are four statistics:
There are four other pairings of statistics:
There are three double-pairings of statistics:
Cf.
A027187,
A027193,
A103919,
A122111,
A236559,
A325039,
A344607,
A344651,
A345196,
A350942,
A350950,
A350951.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,?EvenQ]==Count[conj[#],?OddQ]&]],{n,0,30}]
A239239
Number of strict partitions of n having fewer odd parts than even.
Original entry on oeis.org
0, 0, 1, 0, 1, 0, 2, 1, 2, 2, 3, 4, 4, 7, 5, 11, 7, 16, 10, 23, 15, 32, 21, 43, 32, 57, 45, 74, 66, 96, 92, 123, 129, 157, 175, 199, 239, 253, 316, 320, 419, 406, 544, 514, 704, 652, 898, 825, 1142, 1045, 1435, 1321, 1798, 1669, 2234, 2103, 2766, 2646, 3404
Offset: 0
a(6) counts these partitions: 6, 42.
-
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, `if`(t<0, 1, 0 ), b(n, i-1, t)+`if`(i>n, 0,
b(n-i, i-1, t+`if`(irem(i, 2)=1, 1, -1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 15 2014
-
z = 55; p[n_] := p[n] = IntegerPartitions[n]; d[u_] := d[u] = DeleteDuplicates[u]; g[u_] := g[u] = Length[u];
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] < Count[#, ?EvenQ] &]], {n, 0, z}] (* A239239 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] <= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239240 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] == Count[#, ?EvenQ] &]], {n, 0, z}] (* A239241 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] > Count[#, ?EvenQ] &]], {n, 0, z}] (* A239242 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] >= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239243 *)
(* Peter J. C. Moses, Mar 10 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[n>i*(i+1)/2, 0, If[n == 0, If[t<0, 1, 0], b[n, i-1, t] + If[i>n, 0, b[n-i, i-1, t+If[Mod[i, 2] == 1, 1, -1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
A352128
Number of strict integer partitions of n with (1) as many even parts as odd parts, and (2) as many even conjugate parts as odd conjugate parts.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 2, 0, 2, 2, 3, 0, 3, 0, 2, 2, 5, 2, 5, 4, 6, 7, 7, 8, 8, 9, 9, 13, 9, 14, 12, 20, 13, 25, 17, 33, 23, 40, 26, 50, 33, 59, 39, 68, 45, 84, 58, 92, 70, 115, 88, 132, 109, 156, 139, 182, 172, 212, 211
Offset: 0
The a(n) strict partitions for selected n:
n = 3 18 22 28 31 32
-----------------------------------------------------------------------
(2,1) (8,5,3,2) (8,6,5,3) (12,7,5,4) (10,7,5,4,3,2) (12,8,7,5)
(8,6,3,1) (8,7,5,2) (12,8,5,3) (10,7,6,5,2,1) (12,9,7,4)
(12,7,2,1) (12,9,5,2) (10,8,5,4,3,1) (16,9,4,3)
(16,9,2,1) (10,9,6,3,2,1) (12,10,7,3)
(12,10,5,1) (12,11,7,2)
(16,11,4,1)
A130780 counts partitions with no more even than odd parts, strict
A239243.
A171966 counts partitions with no more odd than even parts, strict
A239240.
There are four statistics:
There are four other pairings of statistics:
There are two other double-pairings of statistics:
Cf.
A000070,
A014105,
A088218,
A098123,
A195017,
A236559,
A236914,
A241638,
A325700,
A350839,
A350941.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,?OddQ]==Count[#,?EvenQ]&&Count[conj[#],?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]
Showing 1-9 of 9 results.
Comments