cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A350949 Heinz numbers of integer partitions with as many even parts as even conjugate parts and as many odd parts as odd conjugate parts.

Original entry on oeis.org

1, 2, 6, 9, 20, 30, 56, 75, 84, 125, 176, 210, 264, 294, 315, 350, 416, 441, 490, 525, 624, 660, 735, 924, 990, 1088, 1100, 1386, 1540, 1560, 1632, 1650, 1715, 2184, 2310, 2340, 2401, 2432, 2600, 3267, 3276, 3388, 3640, 3648, 3900, 4080, 4125, 5082, 5324, 5390
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
     1: ()
     2: (1)
     6: (2,1)
     9: (2,2)
    20: (3,1,1)
    30: (3,2,1)
    56: (4,1,1,1)
    75: (3,3,2)
    84: (4,2,1,1)
   125: (3,3,3)
   176: (5,1,1,1,1)
   210: (4,3,2,1)
   264: (5,2,1,1,1)
   294: (4,4,2,1)
   315: (4,3,2,2)
   350: (4,3,3,1)
   416: (6,1,1,1,1,1)
		

Crossrefs

The second condition alone is A350944, counted by A277103.
The first condition alone is A350945, counted by A350948.
The case of all four statistics equal is A350947, counted by A351978.
These partitions are counted by A351976.
There are four other possible pairings of statistics:
- A045931: # even = # odd, ranked by A325698, strict A239241.
- A045931: # even conj = # odd conj, ranked by A350848, strict A352129.
- A277579: # even = # odd conj, ranked by A349157, strict A352131.
- A277579: # even conj = # odd, ranked by A350943, strict A352130.
There are two other possible double-pairings of statistics:
- A350946, counted by A351977.
- A351980, counted by A351981.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 represents partition conjugation using Heinz numbers.
A195017 = # of even parts - # of odd parts.
A257991 counts odd parts, conjugate A344616.
A257992 counts even parts, conjugate A350847.
A316524 = alternating sum of prime indices.

Programs

Formula

Intersection of A350944 and A350945.
A257991(a(n)) = A344616(a(n)).
A257992(a(n)) = A350847(a(n)).
Closed under A122111 (conjugation).

A098123 Number of compositions of n with equal number of even and odd parts.

Original entry on oeis.org

1, 0, 0, 2, 0, 4, 6, 6, 24, 28, 60, 130, 190, 432, 770, 1386, 2856, 5056, 9828, 18918, 34908, 68132, 128502, 244090, 470646, 890628, 1709136, 3271866, 6238986, 11986288, 22925630, 43932906, 84349336, 161625288, 310404768, 596009494
Offset: 0

Views

Author

Vladeta Jovovic, Sep 24 2004

Keywords

Examples

			From _Gus Wiseman_, Jun 26 2022: (Start)
The a(0) = 1 through a(7) = 6 compositions (empty columns indicated by dots):
  ()  .  .  (12)  .  (14)  (1122)  (16)
            (21)     (23)  (1212)  (25)
                     (32)  (1221)  (34)
                     (41)  (2112)  (43)
                           (2121)  (52)
                           (2211)  (61)
(End)
		

Crossrefs

For partitions: A045931, ranked by A325698, strict A239241 (conj A352129).
Column k=0 of A242498.
Without multiplicity: A242821, for partitions A241638 (ranked by A325700).
These compositions are ranked by A355321.
A047993 counts balanced partitions, ranked by A106529.
A108950/A108949 count partitions with more odd/even parts.
A130780/A171966 count partitions with more or as many odd/even parts.
Cf. A025178.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Count[#,?EvenQ]==Count[#,?OddQ]&]],{n,0,15}] (* Gus Wiseman, Jun 26 2022 *)

Formula

a(n) = Sum_{k=floor(n/3)..floor(n/2)} C(2*n-4*k,n-2*k)*C(n-1-k,2*n-4*k-1).
Recurrence: n*(2*n-7)*a(n) = 2*(n-2)*(2*n-5)*a(n-2) + 2*(2*n-7)*(2*n-3)*a(n-3) - (n-4)*(2*n-3)*a(n-4). - Vaclav Kotesovec, May 01 2014
a(n) ~ sqrt(c) * d^n / sqrt(Pi*n), where d = 1.94696532812840456026081823863... is the root of the equation 1-4*d-2*d^2+d^4 = 0, c = 0.225563290820392765554898545739... is the root of the equation 43*c^4-18*c^2+8*c-1=0. - Vaclav Kotesovec, May 01 2014
G.f.: 1/sqrt(1 - 4*x^3/(1-x^2)^2). - Seiichi Manyama, May 01 2025

A350946 Heinz numbers of integer partitions with as many even parts as odd parts and as many even conjugate parts as odd conjugate parts.

Original entry on oeis.org

1, 6, 65, 84, 210, 216, 319, 490, 525, 532, 731, 1254, 1403, 1924, 2184, 2340, 2449, 2470, 3024, 3135, 3325, 3774, 4028, 4141, 4522, 5311, 5460, 7030, 7314, 7315, 7560, 7776, 7942, 8201, 8236, 9048, 9435, 9464, 10659, 10921, 11484, 11914, 12012, 12025, 12740
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
     1: ()
     6: (2,1)
    65: (6,3)
    84: (4,2,1,1)
   210: (4,3,2,1)
   216: (2,2,2,1,1,1)
   319: (10,5)
   490: (4,4,3,1)
   525: (4,3,3,2)
   532: (8,4,1,1)
   731: (14,7)
  1254: (8,5,2,1)
  1403: (18,9)
  1924: (12,6,1,1)
  2184: (6,4,2,1,1,1)
  2340: (6,3,2,2,1,1)
  2449: (22,11)
  2470: (8,6,3,1)
For example, the prime indices of 532 are (8,4,1,1), even/odd counts 2/2, and the prime indices of the conjugate 3024 are (4,2,2,2,1,1,1,1), with even/odd counts 4/4; so 532 belongs to the sequence.
		

Crossrefs

For the first condition alone:
- counted by A045931 (strict A239241)
- ordered version (compositions) A098123
- ranked by A325698
- without multiplicity A325700 (counted by A241638)
The second condition alone is ranked by A350848, strict A352129.
These partitions are counted by A351977, strict A352128.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847.
There are four other possible pairings of statistics:
- A349157: # of even parts = # of odd conjugate parts, counted by A277579.
- A350943: # of even conj parts = # of odd parts, strict counted by A352130.
- A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
- A350945: # of even parts = # of even conjugate parts, counted by A350948.
There are two other possible double-pairings of statistics:
- A350949, counted by A351976.
- A351980, counted by A351981.
The case of all four statistics equal is A350947, counted by A351978.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 represents partition conjugation using Heinz numbers.
A195017 = # of even parts - # of odd parts.
A316524 = alternating sum of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[1000],#==1||Mean[Mod[primeMS[#],2]]== Mean[Mod[conj[primeMS[#]],2]]==1/2&]

Formula

Closed under A122111 (conjugation).
Intersection of A325698 and A350848.
A257992(a(n)) = A257991(a(n)).
A350847(a(n)) = A344616(a(n)).

A351976 Number of integer partitions of n with (1) as many odd parts as odd conjugate parts and (2) as many even parts as even conjugate parts.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 4, 5, 5, 5, 6, 9, 11, 11, 16, 21, 22, 24, 31, 41, 46, 48, 64, 82, 91, 98, 120, 155, 175, 188, 237, 297, 329, 357, 437, 544, 607, 658, 803, 987, 1098, 1196, 1432, 1749, 1955, 2126, 2541, 3071, 3417, 3729, 4406, 5291, 5890, 6426
Offset: 0

Views

Author

Gus Wiseman, Mar 14 2022

Keywords

Examples

			The a(n) partitions for selected n:
n = 3     8       11        12        15          16
   ----------------------------------------------------------
    (21)  (332)   (4322)    (4332)    (4443)      (4444)
          (4211)  (4331)    (4422)    (54321)     (53332)
                  (4421)    (4431)    (632211)    (55222)
                  (611111)  (53211)   (633111)    (55411)
                            (621111)  (642111)    (633211)
                                      (81111111)  (642211)
                                                  (643111)
                                                  (7321111)
                                                  (82111111)
		

Crossrefs

The first condition alone is A277103, ranked by A350944, strict A000700.
The second condition alone is A350948, ranked by A350945.
These partitions are ranked by A350949.
A000041 counts integer partitions.
A122111 represents partition conjugation using Heinz numbers.
A195017 = # of even parts - # of odd parts.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847.
There are four other possible pairings of statistics:
- A045931: # even = # odd, ranked by A325698, strict A239241.
- A045931: # even conj = # odd conj, ranked by A350848, strict A352129.
- A277579: # even = # odd conj, ranked by A349157, strict A352131.
- A277579: # even conj = # odd, ranked by A350943, strict A352130.
There are two other possible double-pairings of statistics:
- A351977: # even = # odd, # even conj = # odd conj, ranked by A350946.
- A351981: # even = # odd conj, # odd = # even conj, ranked by A351980.
The case of all four statistics equal is A351978, ranked by A350947.

Programs

A351977 Number of integer partitions of n with as many even parts as odd parts and as many even conjugate parts as odd conjugate parts.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 2, 0, 2, 4, 2, 1, 6, 6, 7, 9, 11, 10, 13, 17, 17, 21, 28, 36, 35, 41, 58, 71, 72, 90, 106, 121, 142, 178, 191, 216, 269, 320, 344, 400, 486, 564, 633, 734, 867, 991, 1130, 1312, 1509, 1702, 1978, 2288, 2582, 2917, 3404
Offset: 0

Views

Author

Gus Wiseman, Mar 14 2022

Keywords

Examples

			The a(n) partitions for selected n (A..C = 10..12):
n = 3     9         15            18          20
   ----------------------------------------------------------
    (21)  (63)      (A5)          (8433)      (8543)
          (222111)  (632211)      (8532)      (8741)
                    (642111)      (8631)      (C611)
                    (2222211111)  (43322211)  (43332221)
                                  (44322111)  (44432111)
                                  (44421111)  (84221111)
                                              (422222111111)
		

Crossrefs

The first condition alone is A045931, ranked by A325698, strict A239241.
The second condition alone is A045931, ranked by A350848, strict A352129.
These partitions are ranked by A350946.
The strict case is A352128.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847.
There are four additional pairings of statistics:
- A277579: # even = # odd conj, ranked by A349157, strict A352131.
- A277579: # even conj = # odd, ranked by A350943, strict A352130.
- A277103: # odd = # odd conj, ranked by A350944, strict A000700.
- A350948: # even = # even conj, ranked by A350945.
There are two additional double-pairings of statistics:
- A351981, ranked by A351980.
- A351976, ranked by A350949.
The case of all four statistics equal is A351978, ranked by A350947.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],Count[#,?OddQ]==Count[#,?EvenQ]&&Count[conj[#],?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]

A351978 Number of integer partitions of n for which the number of even parts, the number of odd parts, the number of even conjugate parts, and the number of odd conjugate parts are all equal.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 2, 0, 1, 0, 6, 1, 3, 1, 8, 5, 3, 5, 7, 14, 2, 13, 9, 28, 5, 22, 26, 44, 17, 30, 60, 59, 42, 41, 120, 84, 84, 66, 204, 143, 144, 131, 325, 268, 226, 261, 486, 498, 344, 488, 739, 874
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2022

Keywords

Examples

			The a(n) partitions for selected n (A = 10):
n = 3    12     19       21       23       24         27
   --------------------------------------------------------------
    21   4332   633322   643332   644333   84332211   655443
         4431   643321   654321   654332   84441111   655542
                644311   665211   654431   85322211   665541
                653221            655322   86322111   666333
                654211            655421   86421111   666531
                664111            664331              A522221111
                                  665321              A622211111
                                  666311
		

Crossrefs

The strict case appears to be the indicator function for A014105.
These partitions are ranked by A350947.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847.
There are six pairings of statistics:
- A045931: # of even parts = # of odd parts:
- ordered A098123
- strict A239241
- ranked by A325698
- A045931: # even conj = # odd conj, ranked by A350848, strict A352129.
- A277579: # even = # odd conj, ranked by A349157, strict A352131.
- A277103: # odd = # odd conj, ranked by A350944, strict A000700.
- A277579: # even conj = # odd, ranked by A350943, strict A352130.
- A350948: # even = # even conj, ranked by A350945.
There are three double-pairings of statistics:
- A351976, ranked by A350949.
- A351977, ranked by A350946.
- A351981, ranked by A351980.
A000041 counts integer partitions, strict A000009.
A103919 and A116482 count partitions by sum and number of odd/even parts.
A195017 = # of even parts - # of odd parts.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],Count[#,?EvenQ]==Count[#,?OddQ]==Count[conj[#],?EvenQ]==Count[conj[#],?OddQ]&]],{n,0,30}]

A351980 Heinz numbers of integer partitions with as many even parts as odd conjugate parts and as many odd parts as even conjugate parts.

Original entry on oeis.org

1, 6, 84, 126, 140, 210, 490, 525, 686, 875, 1404, 1456, 2106, 2184, 2288, 2340, 3432, 3510, 5460, 6760, 7644, 8190, 8580, 8775, 9100, 9464, 11466, 12012, 12740, 12870, 13650, 14300, 14625, 15808, 18018, 18468, 19110, 19152, 20020, 20672, 21450, 22308, 23712
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
     1: ()
     6: (2,1)
    84: (4,2,1,1)
   126: (4,2,2,1)
   140: (4,3,1,1)
   210: (4,3,2,1)
   490: (4,4,3,1)
   525: (4,3,3,2)
   686: (4,4,4,1)
   875: (4,3,3,3)
  1404: (6,2,2,2,1,1)
  1456: (6,4,1,1,1,1)
  2106: (6,2,2,2,2,1)
  2184: (6,4,2,1,1,1)
  2288: (6,5,1,1,1,1)
  2340: (6,3,2,2,1,1)
		

Crossrefs

The first condition alone is A349157, counted by A277579.
The second condition alone is A350943, counted by A277579.
There are two other possible double-pairings of statistics:
- A350946, counted by A351977.
- A350949, counted by A351976.
The case of all four statistics equal is A350947, counted by A351978.
These partitions are counted by A351981.
Partitions with as many even as odd parts:
- counted by A045931
- strict case counted by A239241
- ranked by A325698
- conjugate ranked by A350848
- strict conjugate case counted by A352129
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 represents partition conjugation using Heinz numbers.
A195017 = # of even parts - # of odd parts.
A257991 counts odd parts, conjugate A344616.
A257992 counts even parts, conjugate A350847.
A316524 = alternating sum of prime indices.
A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
A350945: # of even parts = # of even conjugate parts, counted by A350948.

Programs

Formula

Closed under A122111 (conjugation).
Intersection of A349157 and A350943.
A257992(a(n)) = A344616(a(n)).
A257991(a(n)) = A350847(a(n)).

A352130 Number of strict integer partitions of n with as many odd parts as even conjugate parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7, 7, 8, 9, 11, 12, 13, 14, 16, 18, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 65, 72, 79, 86, 93, 102, 111, 121, 132, 143, 155, 169, 183, 197, 213, 231, 251, 271, 292, 315, 340, 367, 396
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2022

Keywords

Examples

			The a(n) strict partitions for selected n:
n = 2    7        9        13        14         15         16
   --------------------------------------------------------------------
    (2)  (6,1)    (8,1)    (12,1)    (14)       (14,1)     (16)
         (4,2,1)  (4,3,2)  (6,4,3)   (6,5,3)    (6,5,4)    (8,5,3)
                  (6,2,1)  (8,3,2)   (10,3,1)   (8,4,3)    (12,3,1)
                           (10,2,1)  (6,4,3,1)  (10,3,2)   (6,5,4,1)
                                     (8,3,2,1)  (12,2,1)   (8,4,3,1)
                                                (6,5,3,1)  (10,3,2,1)
                                                           (6,4,3,2,1)
		

Crossrefs

This is the strict case of A277579, ranked by A350943 (zeros of A350942).
The conjugate version is A352131, non-strict A277579 (ranked by A349157).
A000041 counts integer partitions, strict A000009.
A130780 counts partitions with no more even than odd parts, strict A239243.
A171966 counts partitions with no more odd than even parts, strict A239240.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847.
There are four other pairings of statistics:
- A045931, ranked by A325698, strict A239241.
- A045931, ranked by A350848, strict A352129.
- A277103, ranked by A350944, strict new.
- A350948, ranked by A350945, strict new.
There are three double-pairings of statistics:
- A351976, ranked by A350949, strict A010054?
- A351977, ranked by A350946, strict A352128.
- A351981, ranked by A351980. strict A014105?
The case of all four statistics equal is A351978, ranked by A350947.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]

A352131 Number of strict integer partitions of n with same number of even parts as odd conjugate parts.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 2, 3, 2, 2, 3, 4, 3, 4, 5, 5, 5, 6, 7, 7, 8, 10, 10, 10, 12, 14, 15, 14, 17, 21, 20, 20, 25, 28, 28, 29, 34, 39, 39, 40, 47, 52, 53, 56, 64, 70, 71, 77, 86, 92, 97, 104, 114, 122
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2022

Keywords

Examples

			The a(n) strict partitions for selected n:
n = 3      10         14         18         21             24
   ----------------------------------------------------------------------
    (2,1)  (6,4)      (8,6)      (10,8)     (11,10)        (8,7,5,4)
           (4,3,2,1)  (5,4,3,2)  (6,5,4,3)  (8,6,4,3)      (9,8,4,3)
                      (6,5,2,1)  (7,6,3,2)  (8,7,4,2)      (10,8,4,2)
                                 (8,7,2,1)  (10,8,2,1)     (10,9,3,2)
                                            (6,5,4,3,2,1)  (11,10,2,1)
                                                           (8,6,4,3,2,1)
		

Crossrefs

This is the strict case of A277579, ranked by A349157 (zeros of A350849).
The conjugate version is A352130, non-strict A277579 (ranked by A350943).
A000041 counts integer partitions, strict A000009.
A130780 counts partitions with no more even than odd parts, strict A239243.
A171966 counts partitions with no more odd than even parts, strict A239240.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847.
There are four other pairings of statistics:
- A045931, ranked by A325698, strict A239241.
- A045931, ranked by A350848, strict A352129.
- A277103, ranked by A350944.
- A350948, ranked by A350945.
There are three double-pairings of statistics:
- A351976, ranked by A350949.
- A351977, ranked by A350946, strict A352128.
- A351981, ranked by A351980.
The case of all four statistics equal is A351978, ranked by A350947.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,?EvenQ]==Count[conj[#],?OddQ]&]],{n,0,30}]

A352128 Number of strict integer partitions of n with (1) as many even parts as odd parts, and (2) as many even conjugate parts as odd conjugate parts.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 2, 0, 2, 2, 3, 0, 3, 0, 2, 2, 5, 2, 5, 4, 6, 7, 7, 8, 8, 9, 9, 13, 9, 14, 12, 20, 13, 25, 17, 33, 23, 40, 26, 50, 33, 59, 39, 68, 45, 84, 58, 92, 70, 115, 88, 132, 109, 156, 139, 182, 172, 212, 211
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2022

Keywords

Examples

			The a(n) strict partitions for selected n:
n = 3      18         22          28           31              32
   -----------------------------------------------------------------------
    (2,1)  (8,5,3,2)  (8,6,5,3)   (12,7,5,4)   (10,7,5,4,3,2)  (12,8,7,5)
           (8,6,3,1)  (8,7,5,2)   (12,8,5,3)   (10,7,6,5,2,1)  (12,9,7,4)
                      (12,7,2,1)  (12,9,5,2)   (10,8,5,4,3,1)  (16,9,4,3)
                                  (16,9,2,1)   (10,9,6,3,2,1)  (12,10,7,3)
                                  (12,10,5,1)                  (12,11,7,2)
                                                               (16,11,4,1)
		

Crossrefs

The first condition is A239241, non-strict A045931 (ranked by A325698).
This is the strict version of A351977, ranked by A350946.
The second condition is A352129, non-strict A045931 (ranked by A350848).
A000041 counts integer partitions, strict A000009.
A130780 counts partitions with no more even than odd parts, strict A239243.
A171966 counts partitions with no more odd than even parts, strict A239240.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847.
There are four other pairings of statistics:
- A277579, strict A352131.
- A277103, ranked by A350944, strict A000700.
- A277579, ranked by A350943, strict A352130.
- A350948, ranked by A350945.
There are two other double-pairings of statistics:
- A351976, ranked by A350949.
- A351981, ranked by A351980.
The case of all four statistics equal is A351978, ranked by A350947.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,?OddQ]==Count[#,?EvenQ]&&Count[conj[#],?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]
Showing 1-10 of 11 results. Next