A239261 Number of partitions of n having (sum of odd parts) = (sum of even parts).
1, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 12, 0, 0, 0, 30, 0, 0, 0, 70, 0, 0, 0, 165, 0, 0, 0, 330, 0, 0, 0, 704, 0, 0, 0, 1380, 0, 0, 0, 2688, 0, 0, 0, 4984, 0, 0, 0, 9394, 0, 0, 0, 16665, 0, 0, 0, 29970, 0, 0, 0, 52096, 0, 0, 0, 90090, 0, 0, 0, 152064, 0, 0, 0
Offset: 0
Examples
a(8) counts these 4 partitions: 431, 41111, 3221, 221111. From _Gus Wiseman_, Oct 24 2023: (Start) The a(0) = 1 through a(12) = 12 partitions: () . . . (211) . . . (431) . . . (633) (3221) (651) (41111) (4332) (221111) (5421) (33222) (52221) (63111) (432111) (3222111) (6111111) (42111111) (222111111) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Mathematica
z = 40; p[n_] := p[n] = IntegerPartitions[n]; f[t_] := f[t] = Length[t] t1 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] < n &]], {n, z}] (* A239259 *) t2 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] <= n &]], {n, z}] (* A239260 *) t3 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] == n &]], {n, z}] (* A239261 *) t4 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] > n &]], {n, z}] (* A239262 *) t5 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] >= n &]], {n, z}] (* A239263 *) (* Peter J. C. Moses, Mar 12 2014 *)
Formula
Extensions
More terms from Alois P. Heinz, Mar 15 2014