cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239264 Number A(n,k) of domicule tilings of a k X n grid; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 3, 0, 1, 1, 1, 5, 5, 1, 1, 1, 0, 11, 0, 11, 0, 1, 1, 1, 21, 43, 43, 21, 1, 1, 1, 0, 43, 0, 280, 0, 43, 0, 1, 1, 1, 85, 451, 1563, 1563, 451, 85, 1, 1, 1, 0, 171, 0, 9415, 0, 9415, 0, 171, 0, 1, 1, 1, 341, 4945, 55553, 162409, 162409, 55553, 4945, 341, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 13 2014

Keywords

Comments

A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other.

Examples

			A(3,2) = 5:
  +-----+ +-----+ +-----+ +-----+ +-----+
  |o o-o| |o o o| |o o o| |o o o| |o-o o|
  ||    | ||  X | || | || | X  || |    ||
  |o o-o| |o o o| |o o o| |o o o| |o-o o|
  +-----+ +-----+ +-----+ +-----+ +-----+
A(4,3) = 43:
  +-------+ +-------+ +-------+ +-------+ +-------+
  |o o o o| |o o o-o| |o o-o o| |o o-o o| |o o-o o|
  ||  X  || | X     | | \   / | ||     || | \    ||
  |o o o o| |o o o o| |o o o o| |o o o o| |o o o o|
  |       | |     X | ||     || |   \ \ | ||    \ |
  |o-o o-o| |o-o o o| |o o-o o| |o-o o o| |o o-o o|
  +-------+ +-------+ +-------+ +-------+ +-------+ ...
Square array A(n,k) begins:
  1, 1,  1,   1,    1,      1,       1, ...
  1, 0,  1,   0,    1,      0,       1, ...
  1, 1,  3,   5,   11,     21,      43, ...
  1, 0,  5,   0,   43,      0,     451, ...
  1, 1, 11,  43,  280,   1563,    9415, ...
  1, 0, 21,   0, 1563,      0,  162409, ...
  1, 1, 43, 451, 9415, 162409, 3037561, ...
		

Crossrefs

Columns (or rows) k=0-10 give: A000012, A059841, A001045(n+1), A239265, A239266, A239267, A239268, A239269, A239270, A239271, A239272.
Bisection of main diagonal gives: A239273.

Programs

  • Maple
    b:= proc(n, l) option remember; local d, f, k;
          d:= nops(l)/2; f:=false;
          if n=0 then 1
        elif l[1..d]=[f$d] then b(n-1, [l[d+1..2*d][], true$d])
        else for k to d while not l[k] do od;
             `if`(k1 and l[k+d+1],
                                  b(n, subsop(k=f, k+d+1=f, l)), 0)+
             `if`(k>1 and n>1 and l[k+d-1],
                                  b(n, subsop(k=f, k+d-1=f, l)), 0)+
             `if`(n>1 and l[k+d], b(n, subsop(k=f, k+d=f, l)), 0)+
             `if`(k `if`(irem(n*k, 2)>0, 0,
        `if`(k>n, A(k, n), b(n, [true$(k*2)]))):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, l_List] := b[n, l] = Module[{d = Length[l]/2, f = False, k}, Which [n == 0, 1, l[[1 ;; d]] == Array[f&, d], b[n-1, Join[l[[d+1 ;; 2*d]], Array[True&, d]]], True, For[k=1, !l[[k]], k++]; If[k1 && l[[k+d+1]], b[n, ReplacePart[l, {k -> f, k+d+1 -> f}]], 0] + If[k>1 && n>1 && l[[k+d-1]], b[n, ReplacePart[l, {k -> f, k+d-1 -> f}]], 0] + If[n>1 && l[[k+d]], b[n, ReplacePart[l, {k -> f, k+d -> f}]], 0] + If[k f, k+1 -> f}]], 0]]]; A[n_, k_] := If[Mod[n*k, 2]>0, 0, If[k>n, A[k, n], b[n, Array[True&, k*2]]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 02 2015, after Alois P. Heinz *)